已知函数f(x)=(1+1tanx)sin2x+msin(x+π4)sin(x-π4)(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tana=2时,f(a)=35,求m的值.

题目简介

已知函数f(x)=(1+1tanx)sin2x+msin(x+π4)sin(x-π4)(1)当m=0时,求f(x)在区间[π8,3π4]上的取值范围;(2)当tana=2时,f(a)=35,求m的值.

题目详情

已知函数f(x)=(1+
1
tanx 
)sin2x+msin(x+
π
4
)sin(x-
π
4

(1)当m=0时,求f(x)在区间[
π
8
4
]上的取值范围;
(2)当tana=2时,f(a)=
3
5
,求m的值.
题型:解答题难度:中档来源:河东区一模

答案

(1)当m=0时,函数f(x)=(1+class="stub"1
tanx 
)sin2x=class="stub"sinx+cosx
sinx
•sin2x=sin2x+sinxcosx=class="stub"1-cos2x
2
+class="stub"1
2
sin2x=class="stub"1
2
+
2
2
sin(2x-class="stub"π
4
).
class="stub"π
8
≤x≤class="stub"3π
4
,∴0≤2x-class="stub"π
4
class="stub"5π
4
,∴-
2
2
≤sin(2x-class="stub"π
4
)≤1,0≤f(x)≤
1+
2
2

故f(x)在区间[class="stub"π
8
class="stub"3π
4
]上的取值范围为[0
1+
2
2
,].
(2)∵当tana=2时,f(a)=class="stub"3
5
,∴sin2a=class="stub"4
5
,cos2a=class="stub"1
5

再由f(a)=(1+class="stub"1
tana
 )sin2a+msin(a+class="stub"π
4
)sin(a-class="stub"π
4
)=class="stub"3
2
sin2a+m(class="stub"1
2
sin2a-class="stub"1
2
cos2a )=class="stub"12+3m
10

可得class="stub"12+3m
10
=class="stub"3
5
,解得m=-2.

更多内容推荐