设实数a≠0,函数f(x)=a(x2+1)-(2x+1a)有最小值-1.(1)求a的值;(2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+…+a2nn,证明:数列{bn}是等差数列.-

题目简介

设实数a≠0,函数f(x)=a(x2+1)-(2x+1a)有最小值-1.(1)求a的值;(2)设数列{an}的前n项和Sn=f(n),令bn=a2+a4+…+a2nn,证明:数列{bn}是等差数列.-

题目详情

设实数a≠0,函数f(x)=a(x2+1)-(2x+
1
a
)有最小值-1.
(1)求a的值;
(2)设数列{an}的前n项和Sn=f(n),令bn=
a2+a4+…+a2n
n
,证明:数列{bn}是等差数列.
题型:解答题难度:中档来源:不详

答案

(1)∵f(x)=a(x-class="stub"1
a
)2+a-class="stub"2
a
,由已知知f(class="stub"1
a
)=a-class="stub"2
a
=-1,且a>0,解得a=1,a=-2(舍去).
(2)证明:由(1)得f(x)=x2-2x,
∴Sn=n2-2n,a1=S1=-1.
当n≥2时,an=Sn-Sn-1=n2-2n-(n-1)2+2(n-1)=2n-3,a1满足上式即an=2n-3.
∵an+1-an=2(n+1)-3-2n+3=2,
∴数列{an}是首项为-1,公差为2的等差数列.
∴a2+a4+…+a2n=
n(a2+a2n)
2

=
n(1+4n-3)
2
=n(2n-1),
即bn=
n(2n-1)
n
=2n-1.
∴bn+1-bn=2(n+1)-1-2n+1=2.
又b2=
a2
1
=1,
∴{bn}是以1为首项,2为公差的等差数列.

更多内容推荐