如图,△ABC是RT△,∠CAB=30°,BC=1,以AB、BC、AC为边分别作3个等边△ABF,△BCE,△ACD。过F作MF垂直DA的延长线于点M,连接并延长DE交MF的延长线于点N.那么△DMN

题目简介

如图,△ABC是RT△,∠CAB=30°,BC=1,以AB、BC、AC为边分别作3个等边△ABF,△BCE,△ACD。过F作MF垂直DA的延长线于点M,连接并延长DE交MF的延长线于点N.那么△DMN

题目详情

如图,△ABC是RT△,∠CAB=30°,BC=1,以AB、BC、AC为边分别作3个等边△ABF,△BCE,△ACD。过F作MF垂直DA的延长线于点M,连接并延长DE交MF的延长线于点N.那么△DMN的面积为    
题型:填空题难度:中档来源:不详

答案

作EG⊥MN于点G,在直角△ABC中,利用三角函数即可求得AB、AC的长度,从而求得DM、EF的长,在直角△EFG中,利用三角函数求得FG的长,EG的长度,然后利用△DMN∽△EGN,相似三角形的对应边的比相等,即可求得MN的长,然后利用正切函数的定义即可求解.
解答:解:作EG⊥MN于点G.
∵在直角△ABC中,BC=1,∠CAB=30°,
∴AB=2,AC=
∵△ABF,△BCE,△ACD是等边三角形,
∴AD=AC=,AM=AB=BF=AF=2,BE=BC=1,
∵在直角△AMF中,∠MAF=30°,AF=AB=2,
∴AM=,MF=1,
∴DM=AD+AM=+=2,EF=BE+BF=1+2=3,
又∵直角△EFG中,∠FEG=30°,
∴FG=EF=,EG=
∴MG=1+=
∵EG∥DM,
∴△DMN∽△EGN,
,设GN=x,

解得:x=,则MN=+=10,
∴tanN=
故答案是:

更多内容推荐