如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,(1)试说明CD是△CBE的角平分线;(2)找出图中与∠B相等的角.-七年级数学

题目简介

如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,(1)试说明CD是△CBE的角平分线;(2)找出图中与∠B相等的角.-七年级数学

题目详情

如图,△ABC中,∠A=30°,∠B=70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE于F,(1)试说明CD是△CBE的角平分线;(2)找出图中与∠B相等的角.
题型:解答题难度:中档来源:不详

答案

(1)∵∠A=30°,∠B=70°,
∴∠ACB=80°.
∵CE平分∠ACB,
∴∠BCE=40.
∵∠B=70°,∠CDB=90°,
∴∠BCD=20°.
∴∠ECD=∠BCD=20°.
∴CD是△BCE的角平分线. 
(2)∵∠ECD=20°,∠CDE=90°,
∴∠CEB=70°.
∴∠B=∠CEB.
∵∠CFD=90°,∠FCD=20°,
∴∠CDF=70°.
∴∠CDF=∠B.
∴与∠B相等的角是:∠CEB、∠CDF.    
(1)根据∠A=30°,∠B=70°,得∠ACB=80°,由角平分线的定义得∠BCE=40,根据三角形的内角和定理得∠BCD=20°,从而得出CD是△BCE的角平分线.
(2)根据ASA得出△CDE≌△CDB,得∠B=∠CEB.根据等角的余角相等,得∠B=∠CDF.

更多内容推荐