如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.-九年级数学

题目简介

如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.-九年级数学

题目详情

如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.

(1)求∠C的大小;
(2)求阴影部分的面积.
题型:解答题难度:偏易来源:不详

答案

解:(1)∵CD是圆O的直径,CD⊥AB,∴。∴∠C=∠AOD。
∵∠AOD=∠COE,∴∠C=∠COE。
∵AO⊥BC,∴∠C=30°。
(2)连接OB,

由(1)知,∠C=30°,∴∠AOD=60°。∴∠AOB=120°。
在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=
∴AB=

试题分析:(1)根据垂径定理可得,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数。
(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB﹣S△OAB,即可得出答案。 

更多内容推荐