已知函数f(x)=sin(x-π6)+cos(x-π3),g(x)=2sin2x2.(I)若α是第一象限角,且f(α)=335,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.-数学

题目简介

已知函数f(x)=sin(x-π6)+cos(x-π3),g(x)=2sin2x2.(I)若α是第一象限角,且f(α)=335,求g(α)的值;(II)求使f(x)≥g(x)成立的x的取值集合.-数学

题目详情

已知函数f(x)=sin(x-
π
6
)+cos(x-
π
3
)
g(x)=2sin2
x
2

(I)若α是第一象限角,且f(α)=
3
3
5
,求g(α)的值;
(II)求使f(x)≥g(x)成立的x的取值集合.
题型:解答题难度:中档来源:湖南

答案

:∵sin(x-class="stub"π
6
)=sinxcosclass="stub"π
6
-cosxsinclass="stub"π
6
=
3
2
sinx-class="stub"1
2
cosx
cos(x-class="stub"π
3
)=cosxcosclass="stub"π
3
+sinxsinclass="stub"π
3
=class="stub"1
2
cosx+
3
2
sinx
f(x)=sin(x-class="stub"π
6
)+cos(x-class="stub"π
3
)
=(
3
2
sinx-class="stub"1
2
cosx)+(class="stub"1
2
cosx+
3
2
sinx)=
3
sinx
g(x)=2sin2class="stub"x
2
=1-cosx
(I)∵f(α)=
3
3
5
,∴
3
sinα=
3
3
5
,解之得sinα=class="stub"3
5

∵α是第一象限角,∴cosα=
1-sin2α
=class="stub"4
5

因此,g(α)=2sin2class="stub"α
2
=1-cosα=class="stub"1
5

(II)f(x)≥g(x),即
3
sinx≥1-cosx
移项,得
3
sinx+cosx≥1,化简得2sin(x+class="stub"π
6
)≥1
∴sin(x+class="stub"π
6
)≥class="stub"1
2
,可得class="stub"π
6
+2kπ≤x+class="stub"π
6
class="stub"5π
6
+2kπ(k∈Z)
解之得2kπ≤x≤class="stub"2π
3
+2kπ(k∈Z)
因此,使f(x)≥g(x)成立的x的取值集合为{x|2kπ≤x≤class="stub"2π
3
+2kπ(k∈Z)}

更多内容推荐