设f(x)=sin(π2x+π4)(x≤2008)f(x-5)(x>2008),则f(2007)+f(2008)+f(2009)+f(2010)=______.-高一数学

题目简介

设f(x)=sin(π2x+π4)(x≤2008)f(x-5)(x>2008),则f(2007)+f(2008)+f(2009)+f(2010)=______.-高一数学

题目详情

f(x)=
sin(
π
2
x+
π
4
)
(x≤2008)
f(x-5)(x>2008)
,则f(2007)+f(2008)+f(2009)+f(2010)=______.
题型:填空题难度:中档来源:不详

答案

由题意可知:f(2007)=sin(class="stub"2007π
2
+class="stub"π
4
)=sin(class="stub"3π
2
+class="stub"π
4
)=-cosclass="stub"π
4
=-
2
2

f(2008)=f(2003)=sin(class="stub"2003π
2
+class="stub"π
4
)=sin(class="stub"3π
2
+class="stub"π
4
)=-cosclass="stub"π
4
=-
2
2

f(2009)=f(2004)=sin(class="stub"2004π
2
+class="stub"π
4
)=sinclass="stub"π
4
=
2
2

f(2010)=f(2005)=sin(class="stub"2005π
2
+class="stub"π
4
)=sin(class="stub"π
2
+class="stub"π
4
)=cosclass="stub"π
4
=
2
2

f(2007)+f(2008)+f(2009)+f(2010)=0.
故答案为:0.

更多内容推荐