(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.(1)求函数y=g(x)的解析式及定义域M;(2)对于函数y=h(x),如果存

题目简介

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2与C1关于直线y=x对称.(1)求函数y=g(x)的解析式及定义域M;(2)对于函数y=h(x),如果存

题目详情

(本小题满分12分)已知函数f(x)=x2-1(x≥1)的图象是C1,函数y=g(x)的图象C2C1关于直线y=x对称.
(1)求函数y=g(x)的解析式及定义域M
(2)对于函数y=h(x),如果存在一个正的常数a,使得定义域A内的任意两个不等的值x1x2都有|h(x1)-h(x2)|≤a|x1x2|成立,则称函数y=h(x)为A的利普希茨Ⅰ类函数.试证明:y=g(x)是M上的利普希茨Ⅰ类函数;
(3)设AB是曲线C2上任意不同两点,证明:直线AB与直线y=x必相交.
题型:解答题难度:中档来源:不详

答案

(1)g(x)= M={x|x≥0};(2)略;(3)略
解:(1)由y=x2-1(x≥1),得y≥0,且x=
f-1(x)= (x≥0),
C2:g(x)= M={x|x≥0}.                                4分
(2)对任意的x1,x2∈M,且x1≠x2,则有x1-x2≠0,x1≥0,x2≥0.
∴|g(x1)-g(x2)|=||=|x1-x2|.
y=g(x)为利普希茨Ⅰ类函数,其中a=.                         8分
(3)设A(x1,y1),B(x2,y2)是曲线C2上不同两点,x1,x2∈M,且x1≠x2.
由(2)知|kAB|=||=<1.
∴直线AB的斜率kAB≠1.
又∵直线y=x的斜率为1,∴直线AB与直线y=x必相交.                                                      12分

更多内容推荐