如图,等边三角形ABC中,点D、E、F分别是BC、AC、AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,垂足分别为点E、F、D.则△DEF的面积与△ABC的面积之比等于()A.︰2B.1︰3C.2︰

题目简介

如图,等边三角形ABC中,点D、E、F分别是BC、AC、AB上的点,且DE⊥AC,EF⊥AB,FD⊥BC,垂足分别为点E、F、D.则△DEF的面积与△ABC的面积之比等于()A.︰2B.1︰3C.2︰

题目详情

如图,等边三角形ABC中,点D、E、F分别是BC、AC、AB上的点,且DEACEFABFDBC,垂足分别为点E、F、D. 则△DEF的面积与△ABC的面积之比等于  (    )
A. ︰2        B.  1︰3               C. 2︰3         D. ︰3
题型:单选题难度:偏易来源:不详

答案

B
:∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比=
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°,△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=DC,
在Rt△DEC中,
DE=DC×sin∠C=  DC,EC=cos∠C×DC=  DC,
又∵DC+BD="BC=AC="  DC,

∴△DEF与△ABC的面积之比等于:==1:3.
故选B.

更多内容推荐