(9分)操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的-九年级数学

题目简介

(9分)操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:纸片利用率=×100%发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的-九年级数学

题目详情

(9分)
操作:小明准备制作棱长为1cm的正方体纸盒,现选用一些废弃的圆形纸片进行如下设计:
 

纸片利用率=×100%
发现:(1)方案一中的点A、B恰好为该圆一直径的两个端点.你认为小明的这个发现是否正确,请说明理由.
(2)小明通过计算,发现方案一中纸片的利用率仅约为38.2%.请帮忙计算方案二的利用率,并写出求解过程.
探究:(3)小明感觉上面两个方案的利用率均偏低,又进行了新的设计(方案三),请直
接写出方案三的利用率.
题型:解答题难度:中档来源:不详

答案

发现:(1)小明的这个发现正确.····················································· 1分
理由:解法一:如图一:

连接AC、BC、AB,∵AC=BC=,AB=
∴AC2+BC2=AB2   ∴∠BAC=90°,····························································· 2分
∴AB为该圆的直径.················································································ 3分
解法二:如图二:

连接AC、BC、AB.易证△AMC≌△BNC,∴∠ACM=∠CBN.
又∵∠BCN+∠CBN=90°,∴∠BCN+∠ACM=90°,即∠BAC=90°,·················· 2分
∴AB为该圆的直径.················································································ 3分
(2)如图三:

易证△ADE≌△EHF,∴AD=EH=1.·························································· 4分
∵DE∥BC,∴△ADE∽△ACB,∴,∴BC=8.·················· 5分
∴S△ACB=16.························································································ 6分
∴该方案纸片利用率=×100%=×100%=37.5%···················· 7分
探究:(3)······················································································· 9分

更多内容推荐