已知函数f(x)的定义域为[-3,+∞),且f(6)=f(-3)=2.f′(x)为f(x)的导函数,f′(x)的图象如图所示.若正数a,b满足f(2a+b)<2,则b+3a-2的取值范围是()A.(-

题目简介

已知函数f(x)的定义域为[-3,+∞),且f(6)=f(-3)=2.f′(x)为f(x)的导函数,f′(x)的图象如图所示.若正数a,b满足f(2a+b)<2,则b+3a-2的取值范围是()A.(-

题目详情

已知函数f(x)的定义域为[-3,+∞),且f(6)=f(-3)=2.f′(x)为f(x)的导函数,f′(x)的图象如图所示.若正数a,b满足f(2a+b)<2,则
b+3
a-2
的取值范围是(  )
A.(-
3
2
,3)
B.(-∞,-
3
2
)∪(3,+∞)
C.(-
9
2
,3)
D.(-∞,-
9
2
)∪(3,+∞)

题型:单选题难度:偏易来源:不详

答案

如图所示:f′(x)≥0在[-3,+∞)上恒成立
∴函数f(x)在[-3,0)是减函数,(0,+∞)上是增函数,
又∵f(2a+b)<2=f(6)
2a+b>0
2a+b<6

画出平面区域
令t=class="stub"b+3
a-2
表示过定点(2,-3)的直线的斜率
如图所示:t∈(-∞,-class="stub"3
2
)∪(3,+∞)
故选B

更多内容推荐