函数f(x)=Asin(ωx+π3)(其中A>0,ω>0)的振幅为2,周期为π.(1)求f(x)的解析式;(2)求f(x)的单调增区间;(3)求f(x)在[-π2,0]的值域.-数学

题目简介

函数f(x)=Asin(ωx+π3)(其中A>0,ω>0)的振幅为2,周期为π.(1)求f(x)的解析式;(2)求f(x)的单调增区间;(3)求f(x)在[-π2,0]的值域.-数学

题目详情

函数f(x)=Asin(ωx+
π
3
)
(其中A>0,ω>0)的振幅为2,周期为π.
(1)求f(x)的解析式;
(2)求f(x)的单调增区间;
(3)求f(x)在[-
π
2
,0]
的值域.
题型:解答题难度:中档来源:不详

答案

(1)∵函数f(x)=Asin(ωx+class="stub"π
3
)
(其中A>0,ω>0)的振幅为2,周期为π.
∴A=2,π=class="stub"2π
ω
.解得ω=2.
f(x)=2sin(2x+class="stub"π
3
)

(2)由-class="stub"π
2
+2kπ≤2x+class="stub"π
3
≤class="stub"π
2
+2kπ
,解得-class="stub"5
12
π+kπ≤x≤kπ+class="stub"π
12
(k∈Z).
∴f(x)的单调增区间为[-class="stub"5π
12
+kπ,kπ+class="stub"π
12
](k∈Z)

(3)∵x∈[-class="stub"π
2
,0]
,∴(2x+class="stub"π
3
)∈[-class="stub"2π
3
,class="stub"π
3
]

∴f(x)的单调递减区间为[-class="stub"π
2
,-class="stub"5π
12
]
;单调递增区间为[-class="stub"5π
12
,0]

∴当2x+class="stub"π
3
=-class="stub"π
2
时,即x=-class="stub"5π
12
时,函数f(x)取得最小值-2;
当x=0时,2x+class="stub"π
3
=class="stub"π
3
时,函数f(x)取得最大值2sinclass="stub"π
3
=
3

故函数f(x)的值域为[-2,
3
]

更多内容推荐