已知角A,B,C为△ABC的三个内角,其对边分别为a,b,c,若m=(-cosA2,sinA2),n=(cosA2,sinA2),a=23,且m•n=12.(1)求角A的值.(2)求b+c的取值范围.

题目简介

已知角A,B,C为△ABC的三个内角,其对边分别为a,b,c,若m=(-cosA2,sinA2),n=(cosA2,sinA2),a=23,且m•n=12.(1)求角A的值.(2)求b+c的取值范围.

题目详情

已知角A,B,C为△ABC的三个内角,其对边分别为a,b,c,若m=(-cos
A
2
,sin
A
2
)
n=(cos
A
2
,sin
A
2
)
a=2
3
,且m•n=
1
2

(1)求角A的值.
(2)求b+c的取值范围.
题型:解答题难度:中档来源:江苏模拟

答案

(1)m=(-cosclass="stub"A
2
,sinclass="stub"A
2
)

n=(cosclass="stub"A
2
,sinclass="stub"A
2
)
,且m•n=class="stub"1
2

-cos2class="stub"A
2
+sin2class="stub"A
2
=class="stub"1
2
,即-cosA=class="stub"1
2

又A∈(0,π),∴A=class="stub"2π
3

(2)由正弦定理得:class="stub"b
sinB
=class="stub"c
sinC
=class="stub"a
sinA
=
2
3
sinclass="stub"2π
3
=4

B+C=π-A=class="stub"π
3

b+c=4sinB+4sinC=4sinB+4sin(class="stub"π
3
-B)=4sin(B+class="stub"π
3
)
(8分)
0<B<class="stub"π
3
,则class="stub"π
3
<B+class="stub"π
3
<class="stub"2π
3

3
2
<sin(B+class="stub"π
3
)≤1
,即b+c的取值范围是(2
3
,4].
(10分)

更多内容推荐