已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥b24+1,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.-高二数学

题目简介

已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥b24+1,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.-高二数学

题目详情

已知函数f(x)=x2+bx+c(b,c∈R),若b、c满足c≥
b2
4
+1
,且f(c)-f(b)≤M(c2-b2)恒成立,则M的最小值为______.
题型:填空题难度:中档来源:不详

答案

∵c≥
b2
4
+1≥2×
|b|
2
×1知,c≥|b|,
当c>|b|时,有M≥
f(c)-f(b)
c2-b2
=
c2-b2+bc-b2
c2-b2
=class="stub"c+2b
b+c

令t=class="stub"b
c
,则-1<t<1,class="stub"c+2b
b+c
=2-class="stub"1
1+t

∵函数g(t)=2-class="stub"1
1+t
(-1<t<1)为增函数,
∴该函数的值域是(-∞,class="stub"3
2
);
∴当c>|b|时,M的取值集合为[class="stub"3
2
,+∞);
当c=|b|时,由c≥
b2
4
+1知,b=±2,c=2,此时f(c)-f(b)=-8或0,
c2-b2=0,从而f(c)-f(b)≤class="stub"3
2
(c2-b2)恒成立;
综上所述,M的最小值为class="stub"3
2

故答案为:class="stub"3
2

更多内容推荐