设函数f(x)=2x2+3ax+2a(x,a∈R)的最小值为M(a),当M(a)取最大值时a的值为()A.43B.34C.89D.98-数学

题目简介

设函数f(x)=2x2+3ax+2a(x,a∈R)的最小值为M(a),当M(a)取最大值时a的值为()A.43B.34C.89D.98-数学

题目详情

设函数f(x)=2x2+3ax+2a(x,a∈R)的最小值为M(a),当M(a)取最大值时a的值为(  )
A.
4
3
B.
3
4
C.
8
9
D.
9
8
题型:单选题难度:中档来源:不详

答案

f(x)=2x2+3ax+2a=2(x+class="stub"3
4
a
)2+2a-class="stub"9
8
a2

当x=-class="stub"3
4
a
时,
f(x)有最小值为m(a)=2a-class="stub"9
8
a2

m'(a)=2-class="stub"9
4
a

m(a)有最大值时m′(a)=2-class="stub"9
4
a
=0,
∴a=class="stub"8
9

故选C.

更多内容推荐