已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R(Ⅰ)求f(x)的最小正周期和最小值;(Ⅱ)已知cos(β-α)=45,cos(β+α)=-45.0<α<β≤π2,求证:[f(β)

题目简介

已知函数f(x)=sin(x+7π4)+cos(x-3π4),x∈R(Ⅰ)求f(x)的最小正周期和最小值;(Ⅱ)已知cos(β-α)=45,cos(β+α)=-45.0<α<β≤π2,求证:[f(β)

题目详情

已知函数f(x)=sin(x+
4
)+cos(x-
4
),x∈R
(Ⅰ)求f(x)的最小正周期和最小值;
(Ⅱ)已知cos(β-α)=
4
5
,cos(β+α)=-
4
5
.0<α<β
π
2
,求证:[f(β)]2-2=0.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)f(x)=sin(x+class="stub"7π
4
)+cos(x-class="stub"3π
4
)=sin(x-class="stub"π
4
)+sin(x-class="stub"π
4
)=2sin(x-class="stub"π
4

∴T=2π,最小值为-2
(Ⅱ)∵cos(β-α)=cosβcosα+sinβsinα=class="stub"4
5
,cos(β+α)=cosβcosα-sinβsinα=-class="stub"4
5

两式相加得2cosβcosα=0,
∵0<α<β≤class="stub"π
2

∴β=class="stub"π
2

∴[f(β)]2-2=4sin2class="stub"π
4
-2=0

更多内容推荐