下列命题中正确命题的序号是:______①两条直线a,b和两条异面直线m,n相交,则直线a,b一定异面;②∃α,β∈R,使cos(α+β)=cosα+cosβ;③∀x>0,都有ln6x+ln3x+1>

题目简介

下列命题中正确命题的序号是:______①两条直线a,b和两条异面直线m,n相交,则直线a,b一定异面;②∃α,β∈R,使cos(α+β)=cosα+cosβ;③∀x>0,都有ln6x+ln3x+1>

题目详情

下列命题中正确命题的序号是:______
①两条直线a,b和两条异面直线m,n相交,则直线a,b一定异面;
②∃α,β∈R,使cos(α+β)=cosα+cosβ;
③∀x>0,都有ln6x+ln3x+1>0;
④∃m∈R,使f(x)=(m-1)xm2-4m+3是幂函数,且在(0,+∞)上递减;
⑤∀ϕ∈R,函数y=sin(2x+ϕ)都不是偶函数.
题型:填空题难度:中档来源:不详

答案

①两条直线a,b和两条异面直线m,n相交,则直线a,b可能相交或异面,但是一定不平行,故不正确;
②取α=-class="stub"π
4
β=class="stub"π
2
,则满足cos(α+β)=cosα+cosβ,故正确;
③∵∀x>0,都有ln6x+ln3x+1=(ln3x+class="stub"1
2
)2+class="stub"3
4
≥class="stub"3
4
>0,因此成立;
④当m=2时,f(x)=class="stub"1
x
是幂函数,且在(0,+∞)上递减,因此正确;
⑤取Φ=class="stub"π
2
时,函数y=sin(2x+class="stub"π
2
)=cos2x是偶函数,故⑤不正确.
综上可知:正确答案为②③④.
故答案为②③④.

更多内容推荐