在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连结OC,AD。(1)求证:OC=AD;(2)求OC的长;-八

题目简介

在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连结OC,AD。(1)求证:OC=AD;(2)求OC的长;-八

题目详情

在平面直角坐标系中,如图所示,△AOB是边长为2的等边三角形,将△AOB绕着点B按顺时针方向旋转得到△DCB,使得点D落在x轴的正半轴上,连结OC,AD。
(1)求证:OC=AD;
(2)求OC的长;
(3)求过A、D两点的直线的解析式。
题型:解答题难度:中档来源:湖南省期末题

答案

解:(1)∵△AOB是边长为2的等边三角形,
∴OA=OB=AB=2,∠AOB=∠BAO=∠OBA=60°
又△DCB是由△AOB绕着点B按顺时针方向旋转得到的,
∴△DCB也是边长为2的等边三角形,
∴∠OBA=∠CBD=60°,OB=AB,BC=BD
又∠OBC=∠OBA+∠ABC=∠CBD+∠ABC=∠ABD
∴△OBC≌△ABD(SAS)
∴OC=AD(全等三角形的对应边相等)。
(2)作CF⊥OD交x轴于点F,则F为BD的中点,
∴BF=1
在Rt△BCF中,BC=2,BF=1,
由勾股定理得:CF2=BC2-BF2=4-1=3
CF=
在Rt△OCF中,OF=OB+BF=2+1=3,
由勾股定理得:OC2=OF2+CF2=9+3=12
∴OC==2
(3)作AE⊥OB交x轴于点E,则E为OB的中点,
∴OE=1,AE=CF=
∴A点的坐标是(1,),
又OD=OB+BD=2+2=4
故D点的坐标是(4,0)
设过A、D两点的直线的解析式为y=kx+b,将A,D点的坐标代入得:
解得k=-,b=
∴过A、D两点的直线的解析式为y=-x+

更多内容推荐