在△ABC中,角A,B,C所对的边分别为a,b,c.已知m=(cos3A2,sin3A2),n=(cosA2,sinA2),且满足|m+n|=3.(1)求角A的大小;(2)若|AC|+|AB|=3|B

题目简介

在△ABC中,角A,B,C所对的边分别为a,b,c.已知m=(cos3A2,sin3A2),n=(cosA2,sinA2),且满足|m+n|=3.(1)求角A的大小;(2)若|AC|+|AB|=3|B

题目详情

在△ABC中,角A,B,C所对的边分别为a,b,c.已知m=(cos
3A
2
,sin
3A
2
),n=(cos
A
2
,sin
A
2
),且满足|m+n|=
3

(1)求角A的大小;
(2)若|
AC
|+|
AB
|=
3
|
BC
|,试判断△ABC的形状.
题型:解答题难度:中档来源:不详

答案

(1)由|
m
+
n
|  =
3
m
 2+
n
2
+2
m
n
=3

即1+1+2(cosclass="stub"3A
2
cosclass="stub"A
2
+sinclass="stub"3A
2
sinclass="stub"A
2
)=3,
∴cosA=class="stub"1
2
,∵0<A<π,∴A=class="stub"π
3

(2)∵|
AC
|+|
AB
|=
3
|
BC
|,
∴b+c=
3
a,
由正弦定理可得,sinB+sinC=
3
sinA,
∴sinB+sin(class="stub"2π
3
-B)=
3
×
3
2

3
2
sinB+class="stub"1
2
cosB=
3
2

∴sin(B+class="stub"π
6
)=
3
2

∵0<B<class="stub"2π
3
,∴class="stub"π
6
<B+class="stub"π
6
class="stub"5π
6

∴B+class="stub"π
6
=class="stub"π
3
class="stub"2π
3
,故B=class="stub"π
6
class="stub"π
2

当B=class="stub"π
6
时,C=class="stub"π
2
;当B=class="stub"π
2
时,C=class="stub"π
6

故△ABC是直角三角形.

更多内容推荐