数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an-12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的

题目简介

数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=1an-12(n≥1).(Ⅰ)求b1、b2、b3、b4的值;(Ⅱ)求数列{bn}的通项公式及数列{anbn}的

题目详情

数列{an}满足a1=1且8an+1an-16an+1+2an+5=0(n≥1).记bn=
1
an-
1
2
(n≥1)

(Ⅰ)求b1、b2、b3、b4的值;
(Ⅱ)求数列{bn}的通项公式及数列{anbn}的前n项和Sn
题型:解答题难度:中档来源:重庆

答案

法一:
(I)a1=1,故b1=class="stub"1
1-class="stub"1
2
=2
a2=class="stub"7
8

b2=class="stub"1
class="stub"7
8
-class="stub"1
2
=class="stub"8
3
a3=class="stub"3
4

b3=class="stub"1
class="stub"3
4
-class="stub"1
2
=4
a4=class="stub"13
20

b4=class="stub"20
3


(II)因(b1-class="stub"4
3
)(b3-class="stub"4
3
)=class="stub"2
3
×class="stub"8
3
=(class="stub"4
3
)2
(b2-class="stub"4
3
)2=(class="stub"4
3
)2,(b1-class="stub"4
3
)(b3-class="stub"4
3
)=(b2-class="stub"4
3
)2

故猜想{bn-class="stub"4
3
}
是首项为class="stub"2
3
,公比q=2的等比数列.
因an≠2,(否则将an=2代入递推公式会导致矛盾)故an+1=class="stub"5+2a
16-8an
(n≥1)

bn+1-class="stub"4
3
=class="stub"1
an+1-class="stub"1
2
-class="stub"4
3
=
16-8an
6an-3
-class="stub"4
3
=
20-16an
6an-3

2(bn-class="stub"4
3
)=class="stub"2
an-class="stub"1
2
-class="stub"8
3
=
20-16an
6an-3
=bn+1-class="stub"4
3
b1-class="stub"4
3
≠0,

|bn-class="stub"4
3
|
确是公比为q=2的等比数列.
b1-class="stub"4
3
=class="stub"2
3
,故bn-class="stub"4
3
=class="stub"1
3
2n
bn=class="stub"1
3
2n+class="stub"4
3
(n≥1)

bn=class="stub"1
an-class="stub"1
2
anbn=class="stub"1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=class="stub"1
2
(b1+b2++bn)+n
=
class="stub"1
3
(1-2n)
1-2
+class="stub"5
3
n
=class="stub"1
3
(2n+5n-1)


法二:
(Ⅰ)由bn=class="stub"1
an-class="stub"1
2
an=class="stub"1
bn
+class="stub"1
2
,代入递推关系8an+1an-16an+1+2an+5=0,
整理得class="stub"4
bn+1bn
-class="stub"6
bn+1
+class="stub"3
bn
=0
,即bn+1=2bn-class="stub"4
3

由a1=1,有b1=2,所以b2=class="stub"8
3
b3=4,b4=class="stub"20
3


(Ⅱ)由bn+1=2bn-class="stub"4
3
bn+1-class="stub"4
3
=2(bn-class="stub"4
3
),b1-class="stub"4
3
=class="stub"2
3
≠0

所以{bn-class="stub"4
3
}
是首项为class="stub"2
3
,公比q=2的等比数列,
bn-class="stub"4
3
=class="stub"1
3
2n
,即bn=class="stub"1
3
2n+class="stub"4
3
(n≥1)

bn=class="stub"1
an-class="stub"1
2
,得anbn=class="stub"1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=class="stub"1
2
(b1+b2++bn)+n
=
class="stub"1
3
(1-2n)
1-2
+class="stub"5
3
n
=class="stub"1
3
(2n+5n-1)


法三:
(Ⅰ)同解法一
(Ⅱ)b2-b1=class="stub"2
3
b3-b2=class="stub"4
3
b4-b3=class="stub"8
3
,class="stub"2
3
×class="stub"8
3
=(class="stub"4
3
)2
猜想{bn+1-bn}是首项为class="stub"2
3

公比q=2的等比数列,bn+1-bn=class="stub"1
3
2n

又因an≠2,故an+1=
5+2an
16-8an
(n≥1)

因此bn+1-bn=class="stub"1
an+1-class="stub"1
2
-class="stub"1
an-class="stub"1
2
=class="stub"1
5+2an
16-8an
-class="stub"1
2
-class="stub"2
2an-1
=
16-8an
6an-3
-class="stub"6
6an-3
=
10-8an
6an-3

bn+2-bn+1=class="stub"1
an+2-class="stub"1
2
-class="stub"1
an+1-class="stub"1
2
=
16-8an+1
6an+1-3
-
16-8an
6an-3
=
36-24an
6an-3
-
16-8an
6an-3
=
20-16an
6an-3
=2(bn+1-bn)

b2-b1=class="stub"2
3
≠0,{bn+1-bn}
是公比q=2的等比数列,bn+1-bn=class="stub"1
3
2n

从而bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1
=class="stub"1
3
(2n-1+2n-2++21)+2

=class="stub"1
3
(2n-2)+2

=class="stub"1
3
2n+class="stub"4
3
(n≥1)

bn=class="stub"1
an-class="stub"1
2
anbn=class="stub"1
2
bn+1

故Sn=a1b1+a2b2+…+anbn=class="stub"1
2
(b1+b2++bn)+n
=
class="stub"1
3
(1-2n)
1-2
+class="stub"5
3
n
=class="stub"1
3
(2n+5n-1)

更多内容推荐