已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求Tn(

题目简介

已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求Tn(

题目详情

已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),
(1)求数列{an}的通项公式an
(2)若数列bn满足bn=log2(an+2),Tn为数列{
bn
an+2
}的前n项和,求Tn
(3)(只理科作)接(2)中的Tn,求证:Tn
1
2
题型:解答题难度:中档来源:不详

答案

(1)当n∈N+时,Sn=2an-2n,
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
         ①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
an+2
an-1+2
=2
,n=1时   S1=2a1-2,∴a1=2
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4•2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
bn
an+2
=class="stub"n+
2n+1

Tn=class="stub"2
22
+class="stub"3
23
 +…+class="stub"n+1
2n+1

class="stub"1
2
Tn=class="stub"2
23
+class="stub"3
24
+…+class="stub"n
2n+1
+class="stub"n+1
2n+2

③-④,class="stub"1
2
Tn=class="stub"2
22
+class="stub"1
23
+class="stub"1
24
…+class="stub"1
2n+1
-class="stub"n+1
2n+2
=class="stub"1
4
+
class="stub"1
4
(1-class="stub"1
2n
)
1-class="stub"1
2
- class="stub"n+1
2n+1

=class="stub"1
4
+class="stub"1
2
-class="stub"1
2n+1
- class="stub"n+1
2n+2

=class="stub"3
4
-class="stub"n+3
2n+2

Tn=class="stub"3
2
-class="stub"n+3
2n+1

(3)n≥2时Tn-Tn-1=-class="stub"n+3
2n+1
+class="stub"n+2
2n
=class="stub"n+1
2n+1
>0

∴{Tn}为递增数列
Tn的最小值是T1=class="stub"1
2

Tn≥class="stub"1
2

更多内容推荐