如图,点A、B在直线MN上,AB=8cm,⊙A、⊙B的半径均为1cm.⊙A以每秒1cm的速度自左向右运动;与此同时,⊙B的半径也随之增大,其半径r(cm)与时间t(秒)之间满足关系式r=1+t(t≥0

题目简介

如图,点A、B在直线MN上,AB=8cm,⊙A、⊙B的半径均为1cm.⊙A以每秒1cm的速度自左向右运动;与此同时,⊙B的半径也随之增大,其半径r(cm)与时间t(秒)之间满足关系式r=1+t(t≥0

题目详情

如图,点A、B在直线MN上,AB=8cm,⊙A、⊙B的半径均为1cm.⊙A以每秒1cm的速度自左向右运动;与此同时,⊙B的半径也随之增大,其半径r(cm)与时间t(秒)之间满足关系式r=1+t(t≥0) .则当点A出发后          秒,两圆相切.
题型:填空题难度:中档来源:不详

答案

3和4.

试题分析:根据两圆相切时,两圆的半径与圆心距的关系,分四种情况考虑:
①当首次外切时,有t+1+1+t=8,解得:t=3;
②当首次内切时,有t+1+t-1=8,解得:t=4;
③当再次内切时,有t-(1+t-1)=8,t无解;
④当再次外切时,有t-(1+t)-1=8,无解.
∴当点A出发后3和4秒两圆相切.

更多内容推荐