已知函数,当时,;当()时,.(1)求在[0,1]内的值域;(2)为何值时,不等式在[1,4]上恒成立.-高三数学

题目简介

已知函数,当时,;当()时,.(1)求在[0,1]内的值域;(2)为何值时,不等式在[1,4]上恒成立.-高三数学

题目详情

已知函数,当时,;当时,.
(1)求在[0,1]内的值域;
(2)为何值时,不等式在[1,4]上恒成立.
题型:解答题难度:偏易来源:不详

答案

(1)值域为;(2)当时,不等式在[1,4]上恒成立.

试题分析: (1)根据题意得到是函数的零点且,然后得到解析式。
(2)令
因为上单调递减,要使在[1,4]上恒成立,只要求解g(x)的最大值即可。
由题意得是函数的零点且,则(此处也可用韦达定理解)解得:
               ------------6分
(1)由图像知,函数在内为单调递减,所以:当时,,当时,.
内的值域为       --------------- 8分
(2)令
因为上单调递减,要使在[1,4]上恒成立,
则需要,即
解得时,不等式在[1,4]上恒成立.    ------12分
点评:解决该试题的关键是根据题意得到是函数的零点且,进而求解得到解析式,进一步研究函数在给定区间的最值。

更多内容推荐