曲线在处的切线平行于直线,则的坐标为()A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)和或(-1,-4)-高二数学

题目简介

曲线在处的切线平行于直线,则的坐标为()A.(1,0)B.(2,8)C.(1,0)或(-1,-4)D.(2,8)和或(-1,-4)-高二数学

题目详情

曲线处的切线平行于直线,则的坐标为(   )
A.( 1 , 0 )B.( 2 , 8 ) C.( 1 , 0 )或(-1, -4)D.( 2 , 8 )和或(-1, -4)
题型:单选题难度:偏易来源:不详

答案

C

试题分析:设P0点的坐标为(a,f(a)),
由f(x)=x3+x-2,得到f′(x)=3x2+1,
由曲线在P0点处的切线平行于直线y=4x,得到切线方程的斜率为4,
即f′(a)=3a2+1=4,解得a=1或a=-1,
当a=1时,f(1)=0;当a=-1时,f(-1)=-4,
则P0点的坐标为(1,0)或(-1,-4),故选C.
点评:解决该试题的关键是利用导数研究曲线上某点切线方程,主要是明确两点:切点是谁,过该点的切线的斜率。

更多内容推荐