已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是()A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数-数学

题目简介

已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是()A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数-数学

题目详情

已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是(  )
A.奇函数B.偶函数
C.既奇且偶函数D.非奇非偶函数
题型:单选题难度:偏易来源:不详

答案

由f(x)为偶函数,知b=0,
∴有g(x)=ax3+cx(a≠0)
∴g(-x)=a(-x)3+c(-x)=-g(x)
g(x)为奇函数.
故选A.

更多内容推荐