如图,AD平分∠BAC,∠BAC+∠ACD=180°,E在AD上,BE的延长线交CD于F,连CE,且∠1=∠2,试说明AB=AC.-数学

题目简介

如图,AD平分∠BAC,∠BAC+∠ACD=180°,E在AD上,BE的延长线交CD于F,连CE,且∠1=∠2,试说明AB=AC.-数学

题目详情

如图,AD平分∠BAC,∠BAC+∠ACD=180°,E在AD上,BE的延长线交CD于F,连CE,且∠1=∠2,试说明AB=AC.360优课网
题型:解答题难度:中档来源:不详

答案

证明:∵∠BAC+∠ACD=180°,
∴ABCD,
∴∠1=∠B,
又∵∠1=∠2,
∴∠B=∠2,
又∵AD平分∠BAC,
∴∠CAE=∠BAE,
∵AE=AE,
∴△ABE≌△ACE,
∴AB=AC.

更多内容推荐