(理)函数y=sin(x-π4)sin(x+π4)的最小值是______.-数学

题目简介

(理)函数y=sin(x-π4)sin(x+π4)的最小值是______.-数学

题目详情

(理) 函数y=sin(x-
π
4
)sin(x+
π
4
)
的最小值是______.
题型:填空题难度:偏易来源:不详

答案

因为:y=sin(x-class="stub"π
4
)sin(x+class="stub"π
4
)

=(sinxcosclass="stub"π
4
-cosxsinclass="stub"π
4
)(sinxcosclass="stub"π
4
+cosxsinclass="stub"π
4

=
2
2
(sinx-cosx)×
2
2
(sinx+cosx)
=class="stub"1
2
(sin2x-cos2x)
=-class="stub"1
2
cos2x.
所以:cos2x=1,函数有最小值-class="stub"1
2

故答案为:-class="stub"1
2

更多内容推荐