在△ABC中,A,B,C为三个内角,f(x)=4cosxsin2(π4+x2)+3cos2x-2cosx.(1)若f(B)=2,求角B;(2)若f(B)-m>2有解,求实数m的取值范围;(3)求f(π

题目简介

在△ABC中,A,B,C为三个内角,f(x)=4cosxsin2(π4+x2)+3cos2x-2cosx.(1)若f(B)=2,求角B;(2)若f(B)-m>2有解,求实数m的取值范围;(3)求f(π

题目详情

在△ABC中,A,B,C为三个内角,f(x)=4cosxsin2(
π
4
+
x
2
)+
3
cos2x-2cosx

(1)若f(B)=2,求角B;
(2)若f(B)-m>2有解,求实数m的取值范围;
(3)求f(
π
4
)+f(
4
)+f(
4
)+…+f(
2003π
4
)
的值.
题型:解答题难度:中档来源:不详

答案

(1)∵sin2(class="stub"π
4
+class="stub"x
2
)
=
1-cos(class="stub"π
2
+x)
2
=class="stub"1+sinx
2

∴f(x)=4cosx×class="stub"1+sinx
2
+
3
cos2x-2cosx

=2cosx+sin2x+
3
cos2x-2cosx

=2sin(2x+class="stub"π
3
)

∵f(B)=2,∴2sin(2B+class="stub"π
3
)=2
,∴sin(2B+class="stub"π
3
)=1

∵0<B<π,∴class="stub"π
3
<2B+class="stub"π
3
<2π+class="stub"π
3

2B+class="stub"π
3
=class="stub"π
2
,解得B=class="stub"π
12

(2)由(1)可知:f(B)∈[-2,2],
∵f(B)-m>2有解,∴2+m<[f(B)]max,∴2+m<2,解得m<0.
∴m的取值范围是(-∞,0).
(3)∵f(x)的周期是π,且f(class="stub"π
4
)+f(class="stub"2π
4
)+f(class="stub"3π
4
)+f(π)
=2[sin(class="stub"π
2
+class="stub"π
3
)+sin(π+class="stub"π
3
)+
sin(class="stub"3π
2
+class="stub"π
3
)+sin(2π+class="stub"π
3
)
]
=2[cosclass="stub"π
3
-sinclass="stub"π
3
-cosclass="stub"π
3
+sinclass="stub"π
3
]=0.
f(class="stub"π
4
)+f(class="stub"2π
4
)+f(class="stub"3π
4
)+…+f(class="stub"2003π
4
)

=500×4×0+f(class="stub"2001π
4
)+f(class="stub"2002π
4
)+f(class="stub"2003π
4
)
=f(class="stub"π
4
)+f(class="stub"2π
4
)+f(class="stub"3π
4
)

=2×(-sinclass="stub"π
3
)
=-
3

更多内容推荐