优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 在数列{an}中,已知an≥1,a1=1,且an+1-an=2an+1+an-1,n∈N*.(1)记bn=(an-12)2,n∈N*,证明:数列{bn}是等差数列,并求数列{an}的通项公式;(2)设
在数列{an}中,已知an≥1,a1=1,且an+1-an=2an+1+an-1,n∈N*.(1)记bn=(an-12)2,n∈N*,证明:数列{bn}是等差数列,并求数列{an}的通项公式;(2)设
题目简介
在数列{an}中,已知an≥1,a1=1,且an+1-an=2an+1+an-1,n∈N*.(1)记bn=(an-12)2,n∈N*,证明:数列{bn}是等差数列,并求数列{an}的通项公式;(2)设
题目详情
在数列{a
n
}中,已知a
n
≥1,a
1
=1,且
a
n+1
-
a
n
=
2
a
n+1
+
a
n
-1
,n∈
N
*
.
(1)记
b
n
=(
a
n
-
1
2
)
2
,n∈
N
*
,证明:数列{b
n
}是等差数列,并求数列{a
n
}的通项公式;
(2)设c
n
=(2a
n
-1)
2
,求
1
c
1
c
2
+
1
c
2
c
3
+…+
1
c
n
c
n+1
的值.
题型:解答题
难度:中档
来源:不详
答案
(1)因为
a
n+1
-
a
n
=
class="stub"2
a
n+1
+
a
n
-1
,
所以an+12-an2-an+1+an=2,----2
因为bn+1-bn=an+12-an2-an+1+an=2,
所以数列{bn}是以
class="stub"1
4
为首项,2为公差的等差数列----5
b
n
=
class="stub"8n-7
4
,
∴
a
n
=
1+
8n-7
2
.----8
(2)因为cn=(2an-1)2=8n-7,----10
所以
class="stub"1
c
n
c
n+1
=
class="stub"1
(8n-7)(8n+1)
=
class="stub"1
8
(
class="stub"1
8n-7
-
class="stub"1
8n+1
)
∴
class="stub"1
c
1
c
2
+
class="stub"1
c
2
c
3
+…+
class="stub"1
c
n
c
n+1
=
class="stub"1
8
(
class="stub"1
8-7
-
class="stub"1
8+1
)
+
class="stub"1
8
(
class="stub"1
16-7
-
class="stub"1
16+1
)
+…+
class="stub"1
8
(
class="stub"1
8n-7
-
class="stub"1
8n+1
)
=
class="stub"1
8
(1-
class="stub"1
8n+1
)
=
class="stub"n
8n+1
.----12
上一篇 :
已知是等差数列,,其前10项和,则其
下一篇 :
数列中,,且,(n∈N*),求通项公式.-高
搜索答案
更多内容推荐
设Sn和Tn分别为两个等差数列{an}和{bn}的前n项和,若对任意n∈N,都有SnTn=7n+14n+27,则数列{an}的第11项与数列{bn}的第11项的比是()A.4:3B.3:2C.7:4D
(12分)已知为锐角,且,函数,数列的首项,.(1)求函数的表达式;(2)求证:;(3)求证:.-数学
(12分)已知正项数列{}的前n项和为对任意,都有。(Ⅰ)求数列的通项公式;(Ⅱ)若是递增数列,求实数m的取值范围。-高三数学
数列中,,求数列的通项公式。-高三数学
等差数列{an}中,a3=8,a7=20,若数列{1anan+1}的前n项和为425,则n的值为()A.14B.15C.16D.18-数学
已知数列{an}是等比数列,Sn为其前n项和.(1)若S4,S10,S7成等差数列,证明a1,a7,a4也成等差数列;(2)设S3=32,S6=2116,bn=λan-n2,若数列{bn}是单调递减数
设是首项为1的正项数列,且,(n∈N*),求数列的通项公式.-高三数学
设是由正数组成的比数列,是其前项和.(1)证明;(2)是否存在常数,使得成立?并证明你的结论.-数学
已知数列的通项公式是,求其前项和.-数学
设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.-高三数学
某外商到一开放区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.(1)若扣除投资及各种经费,则从第几年开始获取-高三数学
已知,,求。-高三数学
设数列:,求.-高三数学
已知函数f(x)=2-1x,a1=32,an+1=f(an)(n∈N*).(1)计算a2,a3,a4的值,并猜想数列{an}的通项公式(不用证明);(2)试证明:对任意n∈N*,a1,an,1an不可
数列中前n项的和,求数列的通项公式.-高三数学
在等差数列中,已知,.(1)求首项与公差,并写出通项公式;(2)中有多少项属于区间?-数学
已知两定点F1(-1,0)、F2(1,0),且是与的等差中项,则动点P的轨迹是().A.椭圆B.双曲线C.抛物线D.线段-高二数学
设数列{an}是公差为d的等差数列,m,n,p,q是互不相等的正整数,若m+n=p+q,则am+an=ap+aq.请你用类比的思想,对等差数列{an}的前n项和为Sn,写出类似的结论若______则_
已知数列{an}为等差数列,公差d≠0,由{an}中的部分项组成的数列a,a,…,a,…为等比数列,其中b1=1,b2=5,b3=17.(1)求数列{bn}的通项公式;(2)记Tn=Cb1+Cb2+C
已知a、b、c成等比数列,如果a、x、b和b、y、c都成等差数列,则=_________-高三数学
已知数列{an}的前n项Sn=pn+q(p≠0,p≠1),求数列{an}是等比数列的充要条件.-高三数学
已知数列满足,,求。-高三数学
数列{an}中,an=32,sn=63,(1)若数列{an}为公差为11的等差数列,求a1;(2)若数列{an}为以a1=1为首项的等比数列,求数列{am2}的前m项和sm′.-数学
已知数列满足:对于都有(1)若求(2)若求(3)若求(4)当取哪些值时,无穷数列不存在?-高三数学
数列求数列的通项公式.-高三数学
是等差数列,若,,则().A.B.C.D.-高二数学
夏季高山上的温度从脚起,每升高,降低℃,已知山顶处的温度是℃,山脚处的温度为℃,问此山相对于山脚处的高度是多少米.-高二数学
数列首项,前项和与之间满足(1)求证:数列是等差数列(2)求数列的通项公式(3)设存在正数,使对于一切都成立,求的最大值。-数学
2008年底某县的绿化面积占全县总面积的%,从2009年开始,计划每年将非绿化面积的8%绿化,由于修路和盖房等用地,原有绿化面积的2%被非绿化.⑴设该县的总面积为1,2008年底绿化面-数学
已知数列中,,n≥2时,求通项公式.-高三数学
设正项数列满足,(n≥2).求数列的通项公式.-高三数学
若等差数列{an}的前n项和为Sn(n∈N*),若a2:a3=5:2,则S3:S5=______.-数学
据有关资料,1995年我国工业废弃垃圾达到7.4×108吨,占地562.4平方公里,若环保部门每年回收或处理1吨旧物资,则相当于处理和减少4吨工业废弃垃圾,并可节约开采各种矿石2-高三数学
某公司全年的利润为b元,其中一部分作为奖金发给n位职工,奖金分配方案如下:首先将职工按工作业绩(工作业绩均不相同)从大到小,由1到n排序,第1位职工得奖金元,然后再将余额-高三数学
已知函数f(x)=a1x+a2x2+a3x3+…+anxn,n∈N*且a1、a2、a3、……、an构成一个数列{an},满足f(1)=n2.(1)求数列{an}的通项公式,并求;(2)证明0<f()<
(本题满分13分)已知数列中,点在函数的图像上,(1)求,(2)若,求.-高三数学
已知等差数列前项和为,且A.10B.100C.2009D.2010.-高三数学
在一直线上共插有13面小旗,相邻两面之距离为,在第一面小旗处有某人把小旗全部集中到一面小旗的位置上,每次只能拿一面小旗,要使他走的路最短,应集中到哪一面小旗的位置上-数学
已知为数列的前项和,,.⑴设数列中,,求证:是等比数列;⑵设数列中,,求证:是等差数列;⑶求数列的通项公式及前项和.【解题思路】由于和中的项与中的项有关,且,可利用、的-数学
已知为等差数列的前项和,.求证:数列是等差数列.-高二数学
公差不为0的等差数列的第2,3,6项成等比数列,则公比为()A.3B.1C.3或1D.不确定-数学
已知数列{an}满足条件:a1=1,a2=r(r>0),且{anan+1}是公比为q(q>0)的等比数列,设bn=a2n-1+a2n(n=1,2,…).(1)求出使不等式anan+1+an+1an+2
从盛满a升酒精的容器里倒出b升,然后再用水加满,再倒出b升,再用水加满;这样倒了n次,则容器中有纯酒精_________升.-高三数学
在直角坐标系中,O是坐标原点,P1(x1,y1)、P2(x2,y2)是第一象限的两个点,若1,x1,x2,4依次成等差数列,而1,y1,y2,8依次成等比数列,则△OP1P2的面积是_________
已知数列的通项公式是,数列是等差数列,令集合,,.将集合中的元素按从小到大的顺序排列构成的数列记为.(1)若,,求数列的通项公式;(2)若,数列的前5项成等比数列,且,,-高三数学
数列满足:(I)求证:(Ⅱ)令(1)求证:是递减数列;(2)设的前项和为求证:-高三数学
已知等差数列的首项为a,公差为b;等比数列的首项为b,公比为a,其中a,,且.(1)求a的值;(2)若对于任意,总存在,使,求b的值;(3)在(2)中,记是所有中满足,的项从小到大依-高三数学
设数列的前项和为,已知,且,其中为常数.(Ⅰ)求与的值;(Ⅱ)证明:数列为等差数列;(Ⅲ)证明:不等式对任何正整数都成立.-高三数学
已知个数成等差数列,它们的和为,平方和为,求这个数.-高二数学
已知为等差数列的前项和,,求.-高二数学
返回顶部
题目简介
在数列{an}中,已知an≥1,a1=1,且an+1-an=2an+1+an-1,n∈N*.(1)记bn=(an-12)2,n∈N*,证明:数列{bn}是等差数列,并求数列{an}的通项公式;(2)设
题目详情
(1)记bn=(an-
(2)设cn=(2an-1)2,求
答案
所以an+12-an2-an+1+an=2,----2
因为bn+1-bn=an+12-an2-an+1+an=2,
所以数列{bn}是以
bn=
∴an=
(2)因为cn=(2an-1)2=8n-7,----10
所以
∴
=
=
=