设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.-高三数学

题目简介

设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10及T10.-高三数学

题目详情

设{an}为等差数列,{bn}为等比数列,a1=b1=1,a2+a4=b3,b2·b4=a3,分别求出{an}及{bn}的前n项和S10T10.
题型:解答题难度:中档来源:不详

答案

S10=10a1+d=-
 ∵{an}为等差数列,{bn}为等比数列,∴a2+a4=2a3,bb4=b32,
已知a2+a4=b3,bb4=a3,∴b3=2a3,a3=b32,
b3=2b32,∵b3≠0,∴b3=,a3=.
a1=1,a3=,知{an}的公差d=-,
S10=10a1+d=-.
b1=1,b3=,知{bn}的公比q=q=-,

更多内容推荐