已知⊙O和三点P、Q、R,⊙O的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线总是与⊙O相交,这个点是()A.PB.QC.RD.P或Q-九年级数学

题目简介

已知⊙O和三点P、Q、R,⊙O的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线总是与⊙O相交,这个点是()A.PB.QC.RD.P或Q-九年级数学

题目详情

已知⊙O和三点P、Q、R,⊙O的半径为3,OP=2,OQ=3,OR=4,经过这三点中的一点任意作直线总是与⊙O相交,这个点是  (     )
A.PB.QC.RD.P或Q
题型:单选题难度:中档来源:不详

答案

A
分析:根据⊙O的半径为3,OP=2,OQ=3,OR=4,可以知道点P在圆内,点Q在圆上,点R在圆外,因而这三点中P的一点任意作直线总是与⊙O相交.
解答:解:∵OP=2<⊙O的半径3,
∴P在圆的内部,
∴经过P点任意作直线总是与⊙O相交.
故选A.

更多内容推荐