设有函数f(x)=asin(kx+π3)和φ(x)=btan(kx-π3),k>0,若它们的最小正周期的和为3π2,且f(π2)=ϕ(π2),f(π4)=-3ϕ(π4)+1,求f(x)和ϕ(x)的解析

题目简介

设有函数f(x)=asin(kx+π3)和φ(x)=btan(kx-π3),k>0,若它们的最小正周期的和为3π2,且f(π2)=ϕ(π2),f(π4)=-3ϕ(π4)+1,求f(x)和ϕ(x)的解析

题目详情

设有函数f(x)=asin(kx+
π
3
)
φ(x)=btan(kx-
π
3
),k>0
,若它们的最小正周期的和为
2
,且f(
π
2
)=ϕ(
π
2
)
f(
π
4
)=-
3
ϕ(
π
4
)+1
,求f(x)和ϕ(x)的解析式.
题型:解答题难度:中档来源:不详

答案

f(x)的最小正周期为class="stub"2π
k
,ϕ(x)的最小正周期为class="stub"π
k

依题意知:class="stub"2π
k
+class="stub"π
k
=class="stub"3π
2
,解得k=2,
∴f(x)=asin(2x+class="stub"π
3
),φ(x)=btan(2x-class="stub"π
3
),
f(class="stub"π
2
)=ϕ(class="stub"π
2
)
f(class="stub"π
4
)=-
3
ϕ(class="stub"π
4
)+1

asinclass="stub"4
3
π=btanclass="stub"2π
3
asinclass="stub"5π
6
=-
3
btanclass="stub"π
6
+1

-
3
2
a=-
3
b
class="stub"a
2
=-b+1

解得:
a=1
b=class="stub"1
2

∴f(x)=sin(2x+class="stub"π
3
),φ(x)=class="stub"1
2
tan(2x-class="stub"π
3
).

更多内容推荐