已知函数f(x)=2sinxcos(x+π3)+3cos2x+12sin2x.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值与最小值;(3)写出函数f(x)的单调递增区间.-数学

题目简介

已知函数f(x)=2sinxcos(x+π3)+3cos2x+12sin2x.(1)求函数f(x)的最小正周期;(2)求函数f(x)的最大值与最小值;(3)写出函数f(x)的单调递增区间.-数学

题目详情

已知函数f(x)=2sinxcos(x+
π
3
)+
3
cos2x+
1
2
sin2x

(1)求函数f(x)的最小正周期;   
(2)求函数f(x)的最大值与最小值;
(3)写出函数f(x)的单调递增区间.
题型:解答题难度:中档来源:不详

答案

f(x)=2sinxcos(x+class="stub"π
3
)+
3
cos2x+class="stub"1
2
sin2x

=2sinx(cosxcosclass="stub"π
3
-sinxsinclass="stub"π
3
)+
3
cos2x+class="stub"1
2
sin2x
=sinxcosx-
3
sin2x+
3
cos2x+class="stub"1
2
sin2x
=sin2x+
3
cos2x
=2sin(2x+class="stub"π
3
),
(1)因为T=class="stub"2π
2
=π,所以f(x)的最小正周期为π;
(2)由-1≤sin(2x+class="stub"π
3
)≤1,得到-2≤f(x)≤2,
则函数f(x)的最大值为2,最小值为-2;
(3)令2kπ-class="stub"π
2
≤2x+class="stub"π
3
≤2kπ+class="stub"π
2

解得:kπ-class="stub"5π
12
≤x≤kπ+class="stub"π
12

则f(x)的单调递增区间为:[kπ-class="stub"5π
12
,kπ+class="stub"π
12
].

更多内容推荐