已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.(1)求数列{an}的通项公式an;(2)若数列{bn}是等差数列,且bn=Snn+c,求非零常数c.-

题目简介

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.(1)求数列{an}的通项公式an;(2)若数列{bn}是等差数列,且bn=Snn+c,求非零常数c.-

题目详情

已知公差大于零的等差数列{an}的前n项和为Sn,且满足:a3•a4=117,a2+a5=22.
(1)求数列{an}的通项公式an
(2)若数列{bn}是等差数列,且bn=
Sn
n+c
,求非零常数c.
题型:解答题难度:中档来源:不详

答案

(1)an为等差数列,a3•a4=117,a2+a5=22
又a2+a5=a3+a4=22
∴a3,a4是方程x2-22x+117=0的两个根,d>0
∴a3=9,a4=13
a1+2d=9
a1+3d=13

∴d=4,a1=1
∴an=1+(n-1)×4=4n-3
(2)由(1)知,sn=n+
n(n-1)×4
2
=2n2-n

bn=
sn
n+c
=
2n2-n
c+n

b1=class="stub"1
1+c
b2=class="stub"6
2+c
b3=class="stub"15
3+c

∵bn是等差数列,∴2b2=b1+b3,∴2c2+c=0,
c=-class="stub"1
2
(c=0舍去)

更多内容推荐