如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=BCCD;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论

题目简介

如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=BCCD;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论

题目详情

如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=
BC
CD
;②S△ABC+S△CDE≥S△ACE;③BM⊥DM;④BM=DM.正确结论的个数是(  )
A.1个B.2个C.3个D.4个

题型:单选题难度:中档来源:不详

答案

∵△ABC和△CDE均为等腰直角三角形,
∴AB=BC,CD=DE,
∴∠BAC=∠BCA=∠DCE=∠DEC=45°,
∴∠ACE=90°;
∵△ABC△CDE
class="stub"AC
EC
=class="stub"AB
ED
=class="stub"BC
CD

①∴tan∠AEC=class="stub"AC
EC

∴tan∠AEC=class="stub"BC
CD
;故本选项正确;
②∵S△ABC=class="stub"1
2
a2,S△CDE=class="stub"1
2
b2,S梯形ABDE=class="stub"1
2
(a+b)2,
∴S△ACE=S梯形ABDE-S△ABC-S△CDE=ab,
S△ABC+S△CDE=class="stub"1
2
(a2+b2)≥ab(a=b时取等号),
∴S△ABC+S△CDE≥S△ACE;故本选项正确;
④过点M作MN垂直于BD,垂足为N.
∵点M是AE的中点,
则MN为梯形中位线,
∴N为中点,
∴△BMD为等腰三角形,
∴BM=DM;故本选项正确;
③又MN=class="stub"1
2
(AB+ED)=class="stub"1
2
(BC+CD),
∴∠BMD=90°,
即BM⊥DM;故本选项正确.
故选D.

更多内容推荐