优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO.求BD的长
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO.求BD的长
题目简介
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO.求BD的长
题目详情
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO.求BD的长.
题型:解答题
难度:中档
来源:不详
答案
(1)证明见解析(2)
(1)证明:如图,连接OD,
∵OD=OC,∴∠DCB=∠ODC。
又∵∠DOB和∠DCB为弧
所对的圆心角和圆周角,
∴∠DOB =2∠DCB。
又∵∠A=2∠DCB,∴∠A=∠DOB。
∵∠ACB=90°,∴∠A+∠B=90°。∴∠DOB+∠B=90°。∴∠BDO=90°。∴OD⊥AB。
∴AB是⊙O的切线。
(2)如图,过点O作OM⊥CD于点M,
∵OD=OE=BE=
BO,∠BDO=90°,∴∠B=30°。∴∠DOB=60°。
∵OD=OC,∴∠DCB=∠ODC。
又∵∠DOB和∠DCB为弧
所对的圆心角和圆周角,∴∠DOB =2∠DCB。
∴∠DCB=30°。
∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2。
∴OD=2,BO=BE+OE=2OE=4。
∴在Rt△BDO中,根据勾股定理得:
。
(1)连接OD,由OD=OC,根据等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出∠DOB=2∠DCB。又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中两锐角互余,等量代换可得出∠B与∠ODB互余,即OD垂直于BD,确定出AB为圆O的切线。
(2)过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,从而确定出
∠DOB=60°,又OD=OC,利用等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出∠DOB=2∠DCB。可得出∠DCB=30°,在三角形CMO中,根据30°角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,从而确定出OD及OB的长,利用勾股定理即可求出BD的长。
本题另解:如图,过O作OM垂直于CD,连接ED,
由垂径定理得到M为CD的中点,又O为EC的中点,得到OM为三角形EDC的中位线,利用三角形中位线定理得到OM等于ED的一半,由弦心距OM的长求出ED的长,再由BE=OE,得到ED为直角三角形DBO斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,由DE的长求出OB的长,再由OD及OB的长,利用勾股定理即可求出BD的长。
上一篇 :
如图,一圆与平面直角坐标系中的
下一篇 :
如图,△ABC中,AB=6,AC=8,BC=10,D、E
搜索答案
更多内容推荐
已知:如图,AC⊙O是的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.-九年级数学
圆锥底面圆的半径为3cm,其侧面展开图是半圆,则圆锥母线长为【】A.3cmB.6cmC.9cmD.12cm-九年级数学
如图,AB是⊙O的弦,半径OC、OD分别交AB与点E、F,且AE=BF,请你找出线段OE、OF的数量关系,并给予证明.-九年级数学
如图,AB是⊙O的直径,BC是弦,∠B=30°,延长BA到D使∠BDC=30°.(1)求证:DC是⊙O的切线.(2)若AB=2,求DC的长.-九年级数学
如图,在⊙O中,CD是直径,AB是弦,且CD⊥AB,已知CD=10,CM=2,求AB。-九年级数学
如图,AB是⊙O的直径,弦CD⊥AB,垂足为M,下列结论不成立的是()A.CM=DMB.C.∠ACD=∠ADCD.OM=BM-九年级数学
如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=度.-九年级数学
用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为A.B.C.D.-九年级数学
半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2
两圆的半径分别为3cm和4cm,圆心距为2cm.,两圆的位置关系是____.-九年级数学
圆和圆有不同的位置关系.与下图不同的圆和圆的位置关系是_____.(只填一种)-九年级数学
如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的半径为【】A.3cmB.4cmC.5cmD.6cm-九年级数学
在平面直角坐标系中,以点(-3,4)为圆心,4为半径的圆A.与轴相交,与轴相切B.与轴相离,与轴相交C.与轴相切,与轴相交D.与轴相切,与轴相离-九年级数学
如图,A、B为是⊙O上两点,C、D分别在半径OA、OB上,若AC=BD,求证:AD=BC.-九年级数学
图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.(1)在图1中画出△ABC,使△ABC为直角三角形(点C在小正方形的顶点-九年级数学
如图,在△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,DE⊥BC,垂足为E.(1)求证:DE是⊙O的切线;(2)若DG⊥AB,垂足为点F,交⊙O于点G,∠A=35°,⊙O半径为5,求劣弧DG
Rt△ABC中,∠C=90°,其内切圆⊙O,切点分别是D、E、F,如果AC=3cm,BC=4cm,则内切圆⊙O的半径等于.-九年级数学
如图,DE为半圆的直径,O为圆心,DE=10,延长DE到A,使得EA=1,直线与半圆交于、两点,且.(1)求弦BC的长;(2)求的面积-九年级数学
如图,A、B、C为⊙O上三点,∠ACB=25º,则∠BAO的度数为.-九年级数学
⊙O1的半径为1cm,⊙O2的半径为4cm,圆心距O1O2=3cm,这两圆的位置关系是【】A.相交B.内切C.外切D.内含-九年级数学
如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.-九年级数学
如图,点A、B、P在⊙O上,∠APB=500,若M是⊙O上的动点,则等腰△ABM顶角的度数为.-九年级数学
如图,在Rt△ABC中,∠ACB=900,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.(1)求证:BD=BF;(2)若CF=1,cosB=,求⊙O
已知圆锥底面圆的半径为2,母线长是4,则它的全面积为A.B.C.D.-九年级数学
如图,AB是⊙O的直径,CD与⊙O相切于点C,DA⊥AB,DO及DO的延长线与⊙O分别相交于点E、F,EB与CF相交于点G.(1)求证:DA=DC;(2)⊙O的半径为3,DC=4,求CG的长.-九年级
已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是cm.-九年级数学
已知⊙与⊙相切,⊙的半径为3cm,且=8,则⊙的半径为.-九年级数学
如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2
如图,两个圆都以点为圆心,大圆的弦交小圆于、两点.求证:=.-九年级数学
如图,是⊙的直径,点、为⊙上的两点,若,则的大小为.-九年级数学
如图,⊙的半径为5,点到圆心的距离为,如果过点作弦,那么长度为整数值的弦的条数为()A.3B.4C.5D.6-九年级数学
如图,点、、在上,若,则的大小是()A.B.C.D.-九年级数学
如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP交AD于点G,连接BG交EF于点H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B
如图,在⊙O中,∠ABC=50°,则∠AOC等于【】A.50°B.80°C.90°D.100°-九年级数学
如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面-九年级数学
已知,如图,M是弧AB的中点,过点M的弦MN交于点C,设圆O的半径为4厘米,MN=4cm,(1)求圆心O到弦MN的距离;(2)求∠ACM的度数。-九年级数学
如图,AB切⊙O于点B,OA=2,∠OAB=300,弦BC∥OA,劣弧的弧长为.(结果保留π)-九年级数学
已知AB是⊙O的直径,直线BC与⊙O相切于点B,∠ABC的平分线BD交⊙O于点D,AD的延长线交BC于点C.(1)求∠BAC的度数;(2)求证:AD=CD.-九年级数学
如图,⊙O的半径是3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠APO=30°,则弦AB的长为A.B.C.D.-九年级数学
如图,已知∠ACB=120º,则∠AOB=_______.-九年级数学
如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为m.-九年级数学
如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为,则图中阴影部分的面积为A.B.C.D.-九年级数学
如图是一个圆形轮子的一部分,请你用直尺和圆规把它补完整.-九年级数学
若扇形的半径为6,圆心角为120°,则此扇形的弧长是A.B.C.D.-九年级数学
已知扇形的半径为6cm,圆心角为150°,则此扇形的弧长是cm,扇形的面积是cm2(结果保留π).-九年级数学
如图.AB是⊙O的直径,E是弧BC的中点,OE交BC于点D,OD=3,DE=2,则AD的长为().A.B.3C.8D.2-九年级数学
如图,的半径为5,弦,于,则的长等于.-九年级数学
一个点到圆的最小距离为3cm,最大距离为8cm,则该圆的半径是()A.5cm或11cmB.2.5cmC.5.5cmD.2.5cm或5.5cm-九年级数学
圆锥的侧面积为6πcm2,底面圆的半径为2cm,则这个圆锥的母线长为cm.-九年级数学
如图AB是⊙O的直径,∠BAC=42°,点D是弦AC的中点,则∠DOC的度数是度.-九年级数学
返回顶部
题目简介
如图,△ABC中,∠ACB=90°,D是边AB上的一点,且∠A=2∠DCB.E是BC上的一点,以EC为直径的⊙O经过点D。(1)求证:AB是⊙O的切线;(2)若CD的弦心距为1,BE=EO.求BD的长
题目详情
(1)求证:AB是⊙O的切线;
(2)若CD的弦心距为1,BE=EO.求BD的长.
答案
∵OD=OC,∴∠DCB=∠ODC。
又∵∠DOB和∠DCB为弧
∴∠DOB =2∠DCB。
又∵∠A=2∠DCB,∴∠A=∠DOB。
∵∠ACB=90°,∴∠A+∠B=90°。∴∠DOB+∠B=90°。∴∠BDO=90°。∴OD⊥AB。
∴AB是⊙O的切线。
(2)如图,过点O作OM⊥CD于点M,
∵OD=OE=BE=
∵OD=OC,∴∠DCB=∠ODC。
又∵∠DOB和∠DCB为弧
∴∠DCB=30°。
∵在Rt△OCM中,∠DCB=30°,OM=1,∴OC=2OM=2。
∴OD=2,BO=BE+OE=2OE=4。
∴在Rt△BDO中,根据勾股定理得:
(1)连接OD,由OD=OC,根据等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出∠DOB=2∠DCB。又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中两锐角互余,等量代换可得出∠B与∠ODB互余,即OD垂直于BD,确定出AB为圆O的切线。
(2)过O作OM垂直于CD,根据垂径定理得到M为DC的中点,由BD垂直于OD,得到三角形BDO为直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,从而确定出
∠DOB=60°,又OD=OC,利用等边对等角得到一对角相等,再由同弧所对圆周角是圆心角一半的性质,可得出∠DOB=2∠DCB。可得出∠DCB=30°,在三角形CMO中,根据30°角所对的直角边等于斜边的一半得到OC=2OM,由弦心距OM的长求出OC的长,从而确定出OD及OB的长,利用勾股定理即可求出BD的长。
本题另解:如图,过O作OM垂直于CD,连接ED,
由垂径定理得到M为CD的中点,又O为EC的中点,得到OM为三角形EDC的中位线,利用三角形中位线定理得到OM等于ED的一半,由弦心距OM的长求出ED的长,再由BE=OE,得到ED为直角三角形DBO斜边上的中线,利用直角三角形斜边上的中线等于斜边的一半,由DE的长求出OB的长,再由OD及OB的长,利用勾股定理即可求出BD的长。