如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)求证:AB=AD+BC;(2)若BE=3,AE=4,求四边形ABCD的面积.-七年级数学
(1)证明:延长AE交BC的延长线于M,∵AE平分∠PAB,BE平分∠CBA,∴∠1=∠2,∠3=∠4,∵AD∥BC∴∠1=∠M=∠2,∠1+∠2+∠3+∠4=180°∴BM=BA,∠3+∠2=90°,∴BE⊥AM,在△ABE和△MBE中,∴△ABE≌△MBE∴AE=ME,在△ADE和△MCE中,;∴△ADE≌△MCE,∴AD=CM,∴AB=BM=BC+AD.(2)解:由(1)知:△ADE≌△MCE,∴S四边形ABCD=S△ABM又∵AE=ME=4,BE=3,∴,∴S四边形ABCD=12.
题目简介
如图,AP∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的延长线交AP于D.(1)求证:AB=AD+BC;(2)若BE=3,AE=4,求四边形ABCD的面积.-七年级数学
题目详情
(1)求证:AB=AD+BC;
(2)若BE=3,AE=4,求四边形ABCD的面积.
答案
(1)证明:延长AE交BC的延长线于M,
![]()
;
,
∵AE平分∠PAB,BE平分∠CBA,
∴∠1=∠2,∠3=∠4,
∵AD∥BC
∴∠1=∠M=∠2,∠1+∠2+∠3+∠4=180°
∴BM=BA,∠3+∠2=90°,
∴BE⊥AM,在△ABE和△MBE中,
∴△ABE≌△MBE
∴AE=ME,在△ADE和△MCE中,
∴△ADE≌△MCE,
∴AD=CM,
∴AB=BM=BC+AD.
(2)解:由(1)知:△ADE≌△MCE,
∴S四边形ABCD=S△ABM
又∵AE=ME=4,BE=3,
∴
∴S四边形ABCD=12.