已知g(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上满足三个条件:①对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立,②g(x5)=12g(x),③g(x)

题目简介

已知g(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上满足三个条件:①对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立,②g(x5)=12g(x),③g(x)

题目详情

已知g(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上满足三个条件:①对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立,②g(
x
5
)=
1
2
g(x)
,③g(x)+g(1-x)=1.则g(
1
2
)+g(
1
5
)+g(
1
20
)
=(  )
A.
3
2
B.
5
4
C.
7
6
D.
9
8
题型:单选题难度:中档来源:资中县模拟

答案

∵g(x)是定义在[-1,1]上的奇函数
∴g(0)=0
∵g(x)+g(1-x)=1
∴令x=1得g(1)+g(0)=1即g(1)=1
令x=class="stub"1
2
得g(class="stub"1
2
)+g(class="stub"1
2
)=1,即g(class="stub"1
2
)=class="stub"1
2

g(class="stub"x
5
)=class="stub"1
2
g(x)

∴令x=1得g(class="stub"1
5
)=class="stub"1
2
g(1)=class="stub"1
2

令x=class="stub"1
2
得g(class="stub"1
10
)=class="stub"1
2
g(class="stub"1
2
)=class="stub"1
4

令x=class="stub"1
5
得g(class="stub"1
25
)=class="stub"1
2
g(class="stub"1
5
)=class="stub"1
4

∵对于任意的x1,x2∈[0,1],当x1<x2时,恒有g(x1)≤g(x2)成立
∴g(class="stub"1
20
)=class="stub"1
4

g(class="stub"1
2
)+g(class="stub"1
5
)+g(class="stub"1
20
)
=class="stub"1
2
+class="stub"1
2
+class="stub"1
4
=class="stub"5
4

故选B.

更多内容推荐