如图,⊙O1与⊙O2内切于点P,又⊙O1切⊙O2的直径BE于点C,连接PC并延长交⊙O2于点A,设⊙O1,⊙O2的半径分别为r、R,且R≥2r.求证:PC•AC是定值.-数学

题目简介

如图,⊙O1与⊙O2内切于点P,又⊙O1切⊙O2的直径BE于点C,连接PC并延长交⊙O2于点A,设⊙O1,⊙O2的半径分别为r、R,且R≥2r.求证:PC•AC是定值.-数学

题目详情

如图,⊙O1与⊙O2内切于点P,又⊙O1切⊙O2的直径BE于点C,连接PC并延长交⊙O2于点A,设⊙O1,⊙O2的半径分别为r、R,且R≥2r.求证:PC•AC是定值.
题型:解答题难度:中档来源:不详

答案

证明:如图连接CQ,AO2,
∵∠PCE与∠ACO2是对顶角,
∴∠PCE=∠ACO2,
∵⊙O1切⊙O2的直径BE于点C,
∴在⊙O1中∠PCE=∠PQC,
∴∠PQC=∠ACO2.
又∵AO2=PO2,
∴∠A=∠P,
∴△PQC△ACO2,
∴PC:AO2=PQ:AC,
∴PC•AC=AO2•PQ=2Rr,
为定值.

更多内容推荐