设向量a=(sinα,1-cosα),b=(sinβ,1+cosβ),c=(0,1),角α∈(0,π),β∈(π,2π),若a与c的夹角为θ1,b与c的夹角为θ2,且θ1-θ2=π3,求tan(α-β

题目简介

设向量a=(sinα,1-cosα),b=(sinβ,1+cosβ),c=(0,1),角α∈(0,π),β∈(π,2π),若a与c的夹角为θ1,b与c的夹角为θ2,且θ1-θ2=π3,求tan(α-β

题目详情

设向量
a
=(sinα,1-cosα)
b
=(sinβ,1+cosβ)
c
=(0,1)
,角α∈(0,π),β∈(π,2π),若
a
c
的夹角为θ1
b
c
的夹角为θ2
,且θ1-θ2=
π
3
,求tan(α-β)的值.
题型:解答题难度:中档来源:不详

答案

a
=(sinα,1-cosα)
b
=(sinβ,1+cosβ)
c
=(0,1)
,角α∈(0,π),β∈(π,2π),
故有 |
a
|=
sin2α+(1-cosα)2
=
2(1-cosα)
=2sinclass="stub"α
2
|
b
|=
sin2β+(1+cosβ)2
=
2(1+cosβ)
=-2cosclass="stub"β
2

又由两个向量的数量积的定义可得
a
c
=1-cosα=2sin2class="stub"α
2
b
c
=1+cosβ=2cos2class="stub"β
2

又 |
c
|=1
,∴cosθ1=
a
c
|
a
|•|
c
|
=sinclass="stub"α
2
,cosθ2=
b
c
|
b
|•|
c
|
=-cosclass="stub"β
2

cosθ1=cos(class="stub"π
2
-class="stub"α
2
),cosθ2=cos(π-class="stub"β
2
)

∵θ1、θ2∈(0,π),class="stub"π
2
-class="stub"α
2
∈(0,class="stub"π
2
)
π-class="stub"β
2
∈(0,class="stub"π
2
)

θ1=class="stub"π
2
-class="stub"α
2
θ2=π-class="stub"β
2

θ1-θ2=class="stub"π
3
,∴(class="stub"π
2
-class="stub"α
2
)-(π-class="stub"β
2
)=class="stub"π
3
,∴class="stub"α-β
2
=-class="stub"5π
6

tanclass="stub"α-β
2
=tan(-class="stub"5π
6
)=tanclass="stub"π
6
=
3
3

tan(α-β)=
2tanclass="stub"α-β
2
1-tan2class="stub"α-β
2
=
3
3
1-class="stub"1
3
=
3

更多内容推荐