函数f(x)=sin(x2-π3)cos(x2+π6)的单调递增区间是()A.[2kπ,2kπ+π](k∈Z)B.[2kπ-π2,2kπ+π2](k∈Z)C.[2kπ-π3,2kπ+2π3](k∈Z)

题目简介

函数f(x)=sin(x2-π3)cos(x2+π6)的单调递增区间是()A.[2kπ,2kπ+π](k∈Z)B.[2kπ-π2,2kπ+π2](k∈Z)C.[2kπ-π3,2kπ+2π3](k∈Z)

题目详情

函数f(x)=sin(
x
2
-
π
3
)cos(
x
2
+
π
6
)
的单调递增区间是(  )
A.[2kπ,2kπ+π](k∈Z)B.[2kπ-
π
2
,2kπ+
π
2
] 
 
(k∈Z)
C.[2kπ-
π
3
,2kπ+
3
] 
 
(k∈Z)
D.[2kπ+
π
2
,2kπ+
2
] 
 
(k∈Z)
题型:单选题难度:偏易来源:不详

答案

f(x)=sin(class="stub"x
2
-class="stub"π
3
)cos(class="stub"x
2
+class="stub"π
6
)
=sin(class="stub"x
2
-class="stub"π
3
)sin[class="stub"π
2
-(class="stub"x
2
+class="stub"π
6
)]

=sin(class="stub"x
2
-class="stub"π
3
)sin(class="stub"π
3
-class="stub"x
2
)
=sin(class="stub"x
2
-class="stub"π
3
)sin(class="stub"x
2
-class="stub"π
3
)

=
-cos2(class="stub"x
2
+class="stub"π
6
)
2
=-
1+cos(x+class="stub"π
3
)
2

当x+class="stub"π
3
∈[-class="stub"π
2
+2kπ
class="stub"π
2
+2kπ
],k∈Z时,f(x)为增函数
解得-class="stub"π
3
+2kπ≤x≤class="stub"π
3
+2kπ,k∈Z
故选C

更多内容推荐