如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.(1)求证:AP∥平面MBD;(2)若AD⊥PB,求证:BD⊥平面PAD.-高二数学

题目简介

如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.(1)求证:AP∥平面MBD;(2)若AD⊥PB,求证:BD⊥平面PAD.-高二数学

题目详情

如图,点P为平行四边形ABCD外一点,且PD⊥平面ABCD,M为PC中点.
(1)求证:AP平面MBD;
(2)若AD⊥PB,求证:BD⊥平面PAD.
题型:解答题难度:中档来源:不详

答案

(1)设AC∩BD=H,连接EH,
∵H为平行四边形ABCD对角线的交点,∴H为AC中点,
又∵M为PC中点,∴MH为△PAC中位线,
可得MHPA,
MH⊂平面MBD,PA⊄平面MBD,
所以PA平面MBD.
(2)∵PD⊥平面ABCD,AD⊂平面ABCD,
∴PD⊥AD,
又∵AD⊥PB,PD∩PB=D,
∴AD⊥平面PDB,结合BD⊂平面PDB,得AD⊥BD
∵PD⊥BD,且PD、AD是平面PAD内的相交直线
∴BD⊥平面PAD.

更多内容推荐