如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,(1)证明:AD⊥平面PAC;(2)求直线AM与平

题目简介

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,(1)证明:AD⊥平面PAC;(2)求直线AM与平

题目详情

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,
(1)证明:AD⊥平面PAC;
(2)求直线AM与平面ABCD所成角的正弦值.
题型:解答题难度:中档来源:不详

答案

(1)证明:∵∠ADC=45°,且AD=AC=2,
∴∠DAC=90°,即AD⊥AC
又∵PO⊥平面ABCD,AD⊂平面ABCD,
∴PO⊥AD,
又∵AC∩PO=O,
∴AD⊥平面PAC
(2)取DO中点N,连接MN,AN
∵M为PD的中点,∴MNPO,且MN=class="stub"1
2
PO=1,
∵PO⊥平面ABCD,∴MN⊥平面ABCD
∴∠MAN是直线AM与平面ABCD所成的角.
在Rt△DAO中,∵AD=2,AO=1,∠DAO=90°,∴DO=
5

∴AN=class="stub"1
2
DO=
5
2

在Rt△ANM中,sin∠MAN=class="stub"MN
MN2+AN2
=class="stub"2
3

即直线AM与平面ABCD所成角的正弦值为class="stub"2
3

更多内容推荐