如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ)CD⊥AE;(Ⅱ)PD⊥平面ABE.-数学

题目简介

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ)CD⊥AE;(Ⅱ)PD⊥平面ABE.-数学

题目详情

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.360优课网
题型:解答题难度:中档来源:不详

答案


360优课网
证明:(Ⅰ)∵PA⊥底面ABCD,∴PA⊥CD,又AC⊥CD,PA∩AC=A,
故CD⊥平面PAC.
又AE⊂平面PAC,∴CD⊥AE.
(Ⅱ)由题意:AB⊥AD,
∴AB⊥平面PAD,从而AB⊥PD.
又AB=BC,且∠ABC=60°,
∴AC=AB,从而AC=PA.
又E为PC之中点,∴AE⊥PC.
由(Ⅰ)知:AE⊥CD,∴AE⊥平面PCD,从而AE⊥PD.
又AB∩AE=A,
故PD⊥平面ABE.

更多内容推荐