已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.求证:A1F⊥平面BED.-高二数学

题目简介

已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.求证:A1F⊥平面BED.-高二数学

题目详情

已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.
求证:A1F⊥平面BED.
题型:解答题难度:中档来源:不详

答案

证明:AA1⊥平面ABCD,AF是A1F在面ABCD上的射影
又∵AC⊥BD,∴A1F⊥BD
取BC中点G,连接FG,B1G,
∵A1B1⊥平面BCC1B1,FG⊥平面BCC1B1,
∴B1G为A1F在面BCC1B1上的射影,
又∵正方形BCC1B1中,E,G分别为CC1,BC的中点,∴BE⊥B1G,
∴A1F⊥BE又∵EB∩BD=B,
∴A1F⊥平面BED.

更多内容推荐