优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 求证:两条异面直线不能同时和一个平面垂直;-数学
求证:两条异面直线不能同时和一个平面垂直;-数学
题目简介
求证:两条异面直线不能同时和一个平面垂直;-数学
题目详情
求证:两条异面直线不能同时和一个平面垂直;
题型:解答题
难度:中档
来源:不详
答案
证明:(反证法)假设两条异面直线能同时和一个平面垂直,
那么这两条直线必平行,
就是两条平行直线在同一平面内,
与题设矛盾
故两条异面直线不能同时和一个平面垂直
上一篇 :
三棱锥V-ABC中,VO⊥平面ABC,O∈C
下一篇 :
已知矩形ABCD中AB=3,BC=a,若PA⊥
搜索答案
更多内容推荐
已知三棱锥P-ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.(Ⅰ)求证:AP⊥平面BDE;(Ⅱ)若AE:EP=1:2,求截面BEF分三棱锥P-ABC所成上、下两
如图,四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点△DAB≌△DCB,EA=EB=AB=1,PA=32,连接CE并延长交AD于F.(1)求证:AD⊥平面CFG;(2)求三棱
已知在三棱锥P-ABC中,PA⊥BC,PB⊥AC,则点P在平面ABC上的射影为△ABC的()A.重心B.外心C.内心D.垂心-高二数学
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点,(1)证明:AD⊥平面PAC;(2)求直线AM与平
四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E为BC的中点.(1)求异面直线NE与AM所成角的余弦值;(2)在线段AN上是否存在点S,使得ES⊥平面AM
已知平面α和直线l,下列命题:(1)若l垂直α内两条直线,则l⊥α;(2)若l垂直α内所有直线,则l⊥α;(3)若l垂直α内两相交直线,则l⊥α;(4)若l垂直α内无数条直线,则l⊥α;(5)若l垂直
设有直线m、n和平面、,则下列说法中正确的是[]A.B.C.D.-高一数学
如果直线l⊥平面α,①若m∥l,则m⊥α;②若m⊥α,则m∥l;③若m∥α,则m⊥l;上述判断正确的是______.-数学
如图,在三棱柱ABC-A1B1C1中,△ABC为等边三角形,侧棱AA1⊥平面ABC,AB=2,AA1=23,D、E分别为AA1、BC1的中点.(Ⅰ)求证:DE⊥平面BB1C1C;(Ⅱ)求三棱锥C-BC
如图,PA垂直于⊙O所在的平面,AB是⊙O的直径,C是⊙O上一点,过点A作AE⊥PC,垂足为E.求证:AE⊥平面PBC.-数学
如图,在四棱锥V-ABCD中底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD(1)证明:AB⊥平面VAD;(2)求面VAD与面VDB所成的二面角的余弦值.-高二数学
如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连接AB,设点F是
△OAB是边长为4的正三角形,CO⊥平面OAB且CO=2,设D、E分别是OA、AB的中点.(1)求证:OB∥平面CDE;(2)求三棱锥O-CDE的体积;(3)在CD上是否存在点M,使OM⊥平面CDE,
如图,已知ABCD是矩形,E是以CD为直径的半圆周上一点,且平面CDE⊥平面ABCD,求证:CE⊥平面ADE.-数学
一条直线和三角形的两边同时垂直,则这条直线和三角形的第三边的位置关系是()A.垂直B.平行C.相交不垂直D.不确定-数学
已知ABCD为矩形,PA⊥平面ABCD,下列判断中正确的是()A.AB⊥PCB.AC⊥平面PBDC.BC⊥平面PABD.平面PBC⊥平面PDC-数学
已知m,n是两条不重合的直线,α,β,γ是三个不重合的平面,给出下列命题:①若m⊥α,m⊥β,则α∥β;②若α⊥β,β⊥γ,则α∥β;③若m⊥α,n⊥β,α∥β,则m∥n;④若m⊥α,n⊥β,则α∥β
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.求证:(Ⅰ)CD⊥AE;(Ⅱ)PD⊥平面ABE.-数学
如果一条直线垂直于一个平面内的①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边,则能保证该直线与平面垂直的是()A.①③B.②C.②④D.①②④-数学
如图,在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BB1=2,AB=2,BC=1,∠BCC1=π3(1)求证:C1B⊥平面ABC;(2)试在棱CC1(不包含端点C,C1)上确定一点E的
如图,四棱锥P-ABCD的底面ABCD为直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.(1)求证:BE∥平面PAD;(2)若AP=2AB,求证:BE⊥C
如图,平面PAD⊥平面ABCD,ABCD为正方形,∠PAD=90°,且PA=AD,E、F分别是线段PA、CD的中点.(Ⅰ)求证:PA⊥平面ABCD;(Ⅱ)求EF和平面ABCD所成的角α;(Ⅲ)求异面直
已知四棱锥S-ABCD中,侧棱SA⊥底面ABCD,且底面ABCD是边长为2的正方形,SA=2,AC与BD相交于点O.(1)证明:SO⊥BD;(2)求三棱锥O-SCD的体积.-高二数学
垂直于同一平面的两条直线()A.平行B.垂直C.相交D.异面-数学
在一个二面角内有一点,过这点分别作两个平面的垂线,求证棱垂直于这两条垂线所决定的平面.-数学
若AP垂直于正方形ABCD所在平面,且AB=AP=2,则PC=______.-数学
棱长为1的正方体ABCD-A1B1C1D1中,点M,N分别在线段AB1,BC1上,且AM=BN,给出以下结论:其中正确的结论的个数为()①AA1⊥MN②异面直线AB1,BC1所成的角为60°③四面体B
在正方体AC1中,已知E、F、G、H分别是CC1、BC、CD和A1C1的中点.证明:(1)AB1∥GE,AB1⊥EH;(2)A1G⊥平面EFD.-数学
如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.(Ⅰ)求证:MN⊥平面A1BC;(Ⅱ)求直线BC1和平面A1BC所成角的大小.-高三数学
如图,直二面角D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(Ⅰ)求证AE⊥平面BCE;(Ⅱ)求二面角B-AC-E的大小;(Ⅲ)求点D到平面ACE的
已知平面α,β,γ,直线l,m满足:α⊥γ,γ∩α=m,γ∩β=l,l⊥m,那么①m⊥β;②l⊥α;③β⊥γ;④α⊥β.可由上述条件可推出的结论有______(请将你认为正确的结论的序号都填上).-数
如图:直三棱柱ABC-A1B1C1中,AC=BC=AA1=2,∠ACB=90°.E为BB1的中点,D点在AB上且DE=3.(Ⅰ)求证:CD⊥平面A1ABB1;(Ⅱ)求三棱锥A1-CDE的体积.-高二数
已知△ABC中∠ACB=90°,SA⊥面ABC,AD⊥SC,求证:AD⊥面SBC.-数学
四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=2,点M是PB的中点,点N在BC边上移动.(I)求证:当N是BC边的中点时,MN∥平面PAC;(Ⅱ)证明,无论N点在
如图,在四棱锥P-ABCD中,ABCD是正方形,PD⊥平面ABCD,PD=AB=2,E,F,G分别是PC,PD,BC的中点.(1)求证:平面PAB∥平面EFG;(2)在线段PB上确定一点Q,使PC⊥平
如图,在底面为菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=2a,点E在PD上,且PE:ED=2:1.(1)求证:PA⊥平面ABCD;(2)求面EAC与面DAC所成的二面角
如图,四棱锥P-ABCD中,底面ABCD为平行四边形.∠DAB=60°,AB=2AD,PD⊥底面ABCD.(Ⅰ)证明:PA⊥BD(Ⅱ)设PD=AD=1,求棱锥D-PBC的高.-高二数学
如图,已知三棱锥P-ABC的侧面PAB是等边三角形,D是AB的中点,PC=BC=AC=2,PB=22.(1)证明:AB⊥平面PCD;(2)求点C到平面PAB的距离.-数学
P为矩形ABCD所在平面外一点,且PA⊥平面ABCD,P到B,C,D三点的距离分别是5,17,13,则P到A点的距离是______.-高二数学
如图,AB是⊙O的直径,C是圆周上不同于A、B的点,PA垂直于⊙O所在平面AE⊥PB于E,AF⊥PC于F,因此______⊥平面PBC(请填图上的一条直线)-数学
如图所示,矩形ABCD的边AB=a,BC=2,PA⊥平面ABCD,PA=2,现有数据:a=32;a=1;a=2;a=3;a=4.若在BC边上存在点Q,使PQ⊥QD,则a可以取所给数据中的哪些值?并说明
已知正方形ABCD的边长为1,AP⊥平面ABCD,且AP=2,则PC=______.-数学
在直角梯形ABCD中,∠ABC=∠BAD=90°,BE⊥平面ABCD,AB=BC=BE=2AD=2.(Ⅰ)求异面直线DE与AC所成角的大小;(Ⅱ)在线段CE上是否存在点F,使平面BDF⊥平面ADE,若
如图,在正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总是保持AP与BD1垂直,则动点P的轨迹为______.-高二数学
如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1.(1)求证:AC1⊥平面A1BC;(2)求多面体B1C1ABC的体
如图,四边形ABCD为矩形,AD⊥平面ABEAE=EB=BC=2,F为CE上的点,且BF⊥平面ACE,BD∩AC=G.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD;(3)求四面体BCDF
如图所示,AB是圆O的直径,PA垂直于圆O所在的平面,M是圆周上异于A、B的任意一点,AN⊥PM,点N为垂足,求证:AN⊥平面PBM.-高二数学
已知:如图,在正方体ABCD-A1B1C1D1中,E是CC1的中点,F是AC,BD的交点.求证:A1F⊥平面BED.-高二数学
已知PA⊥⊙O所在的平面,AB是⊙O的直径,C是⊙O上任意一点,过A点作AE⊥PC于点E,求证:AE⊥平面PBC.-数学
直线a、b相交于点O,且a、b成600角,过点O/与a、b都成600角的直线有______条.-数学
返回顶部
题目简介
求证:两条异面直线不能同时和一个平面垂直;-数学
题目详情
答案
那么这两条直线必平行,
就是两条平行直线在同一平面内,
与题设矛盾
故两条异面直线不能同时和一个平面垂直