如图,直角梯形ABCD中,AD∥BC,∠B=90°,BC=2AB=2AD=4.以AB为直径作⊙O,点P在梯形内的半圆弧上运动,则△CPD的最小面积是______.-数学

题目简介

如图,直角梯形ABCD中,AD∥BC,∠B=90°,BC=2AB=2AD=4.以AB为直径作⊙O,点P在梯形内的半圆弧上运动,则△CPD的最小面积是______.-数学

题目详情

如图,直角梯形ABCD中,ADBC,∠B=90°,BC=2AB=2AD=4.以AB为直径作⊙O,点P在梯形内的半圆弧上运动,则△CPD的最小面积是______.
题型:填空题难度:偏易来源:不详

答案

过点O作OE⊥CD交CD的延长线于E,OE交⊙O 于P,则△PCD就是所求的三角形,连接OC、OD,过点D作DF⊥BC于点F,
∵直角梯形ABCD中,ADBC,∠B=90°,
∴∠A=∠B=∠BFD=90°,
∴四边形ABDF是矩形,
∴BF=AD,DF=AB,
∵BC=2AB=2AD=4,
∴AD=AB=2,
∵以AB为直径作⊙O,
∴OA=OB=1,
∴S梯形ABCD=class="stub"1
2
(AD+BC)•AB=class="stub"1
2
×(2+4)×2=6,S△OAD=class="stub"1
2
OA•AD=class="stub"1
2
×1×2=1,S△OBC=class="stub"1
2
OB•BD=class="stub"1
2
×1×4=2,
∴S△ODC=S梯形ABCD-S△OAD-S△OBC=6-1-2=3,
在Rt△DFC中,CF=BC-BF=4-2=2,DF=AB=2,
∴CD=
DF2+CF2
=2
2

∵S△OCD=class="stub"1
2
CD•OE=3,
∴OE=class="stub"3
2
2

∴PE=OE-OP=class="stub"3
2
2
-1,
∴S△CPD=class="stub"1
2
CD•PE=class="stub"1
2
×2
2
×(class="stub"3
2
2
-1)=3-
2

故答案为:3-
2

更多内容推荐