如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.(Ⅰ)若Q是PA的中点,求证:PC∥平面BDQ;(Ⅱ)若PB=PD,求证:BD⊥CQ;(Ⅲ)在(Ⅱ)的条件下,若PA=

题目简介

如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.(Ⅰ)若Q是PA的中点,求证:PC∥平面BDQ;(Ⅱ)若PB=PD,求证:BD⊥CQ;(Ⅲ)在(Ⅱ)的条件下,若PA=

题目详情

如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若Q是PA的中点,求证:PC平面BDQ;
(Ⅱ)若PB=PD,求证:BD⊥CQ;
(Ⅲ)在(Ⅱ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.
题型:解答题难度:中档来源:不详

答案

(Ⅰ)证明:连接AC,交BD于O.
因为底面ABCD为菱形,所以O为AC中点.
因为Q是PA的中点,所以OQPC,
因为OQ⊂平面BDQ,PC⊄平面BDQ,
所以PC平面BDQ.…(5分)
(Ⅱ)证明:因为底面ABCD为菱形,
所以AC⊥BD,O为BD中点.
因为PB=PD,所以PO⊥BD.
因为PO∩BD=O,所以BD⊥平面PAC.
因为CQ⊂平面PAC,所以BD⊥CQ.…(10分)
(Ⅲ)因为PA=PC,所以△PAC为等腰三角形.
因为O为AC中点,所以PO⊥AC.
由(Ⅱ)知PO⊥BD,且AC∩BD=O,所以PO⊥平面ABCD,即PO为四棱锥P-ABCD的高.
因为四边形是边长为2的菱形,且∠ABC=60°,所以BO=
3

所以PO=
6

所以VP-ABCD=class="stub"1
3
×2
3
×
6
=2
2
,即VP-ABCD=2
2
.…(14分)

更多内容推荐