设等比数列{an}的前n项和为Sn,已知(I)求数列{an}的通项公式;(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{}的前n项和Tn.-高三数学

题目简介

设等比数列{an}的前n项和为Sn,已知(I)求数列{an}的通项公式;(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{}的前n项和Tn.-高三数学

题目详情

设等比数列{an}的前n项和为Sn,已知
(I)求数列{an}的通项公式;
(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{}的前n项和Tn
题型:解答题难度:中档来源:山东省期末题

答案

解:(I)由可得an=2Sn﹣1+2(n≥2)
两式相减可得,an+1﹣an=2an     即an+1=3an(n≥2)
又∵a2=2a1+2,且数列{an}为等比数列
∴a2=3a1   则2a1+2=3a1
∴a1=2

(II)由(I)知,
∴an+1=an+(n+1)dn
==
两式相减可得,
===

更多内容推荐