设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1),n∈N*.(I)求数列{an}的通项公式;(II)设bn=an2n,求数列{bn}的前n项和Tn;(III)求使不等式(1+

题目简介

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1),n∈N*.(I)求数列{an}的通项公式;(II)设bn=an2n,求数列{bn}的前n项和Tn;(III)求使不等式(1+

题目详情

设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-2n(n-1),n∈N*
(I)求数列{an}的通项公式;
(II)设bn=
an
2n
,求数列{bn}的前n项和Tn
(III)求使不等式(1+
2
a1+1
)(1+
2
a2+1
)…(1+
3
an+1
)≥p
2n+1
对一切n∈N*均成立的最大实数p的值.
题型:解答题难度:中档来源:不详

答案

(I)证明:∵a1=1,Sn=nan-2n(n-1),
Sn+1=(n+1)an+1-2(n+1)n,
∴an+1=Sn+1-Sn=(n+1)an+1-nan-4n,
∴an+1-an=4,
∴数列{an}是首项为1,公差为4的等差数列,
∴an=1+(n-1)•4=4n-3.
(II)由(I)知:an=4n-3,
bn=
an
2n
=class="stub"4n-3
2n

Tn=class="stub"1
2
+class="stub"5
22
+class="stub"9
23
+…+class="stub"4n-7
2n-1
+class="stub"4n-3
2n

class="stub"1
2
Tn=class="stub"1
2 2
+class="stub"5
23
+class="stub"9
24
+…+
class="stub"4n-7
2n
+class="stub"4n-3
2n+1

两式相减,得:class="stub"1
2
Tn=class="stub"1
2
+4(class="stub"1
2 2
+class="stub"1
2 3
+class="stub"1
2 4
+…+class="stub"1
2 n
)-class="stub"4n-3
2n+1

=class="stub"1
2
+4×
class="stub"1
2 2
(1-class="stub"1
2 n-1
)
1-class="stub"1
2
-class="stub"4n-3
2n+1

=class="stub"1
2
+2-class="stub"2
2 n-1
-class="stub"4n-3
2n+1

Tn=5-class="stub"4n+5
2n

(III)∵(1+class="stub"2
a1+1
)(1+class="stub"2
a2+1
)…(1+class="stub"2
an+1
)
p
2n+1
对一切n∈N*均成立,
p≤class="stub"1
2n+1
(1+class="stub"2
a1+1
)(1+class="stub"2
a2+1
)…
(1+class="stub"2
an+1
)
对一切n∈N*均成立,
只需p≤[class="stub"1
2n+1
(1+class="stub"2
a1+1
)(1+class="stub"2
a2+1
)…
(1+class="stub"2
an+1
)]min
min,n∈N*,
f(n)=class="stub"1
2n+1
(1+class="stub"2
a1+1
 )(1+class="stub"2
a2+1
)
(1+class="stub"2
an-1+1
)
,n≥2,且n∈N*,
f(n-1)=class="stub"1
2n-1
(1+class="stub"2
a1+1
)(1+class="stub"2
a2+1
)…
(1+class="stub"2
an-1+1
)
,n≥2,且n∈N*,
f(n)
f(n-1)
=
2n-1
2n+1
(1+class="stub"2
an+1
)
=
2n-1
2n+1
•class="stub"2n
2n-1
=class="stub"2n
4n2-1
>1,n≥2,且n∈N*,
∴f(n)>f(n-1),n≥2,且n∈N*,
即f(n)在n∈N*上为增函数,
f(n) min=f(1)=class="stub"2
3
=
2
3
3

p≤
2
3
3

故实数p的最大值是
2
3
3

更多内容推荐